cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082902 a(n) = gcd(2^n, sigma(2,n)) = gcd(A000079(n), A001157(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 4, 1, 2, 1, 2, 2, 4, 2, 2, 2, 1, 2, 4, 2, 2, 4, 2, 1, 4, 2, 4, 1, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 1, 1, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 2, 1, 4, 4, 2, 2, 4, 4, 2, 1, 2, 2, 2, 2, 4, 4, 2, 2, 1, 2, 2, 4, 4, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 2, 1, 2, 1, 2, 4, 2, 2, 8
Offset: 1

Views

Author

Labos Elemer, Apr 22 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^IntegerExponent[DivisorSigma[2, n], 2]; Array[a, 100] (* Amiram Eldar, Oct 01 2023 *)
  • PARI
    A082902(n) = gcd(2^n, sigma(n, 2)); \\ Antti Karttunen, Sep 27 2018

Formula

a(n) = A006519(A001157(n)). - Antti Karttunen, Sep 27 2018
Multiplicative with a(2^e) = 1, and a(p^e) = A006519(e+1) for an odd prime p. - Amiram Eldar, Oct 01 2023