A082902 a(n) = gcd(2^n, sigma(2,n)) = gcd(A000079(n), A001157(n)).
1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 4, 1, 2, 1, 2, 2, 4, 2, 2, 2, 1, 2, 4, 2, 2, 4, 2, 1, 4, 2, 4, 1, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 1, 1, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 2, 1, 4, 4, 2, 2, 4, 4, 2, 1, 2, 2, 2, 2, 4, 4, 2, 2, 1, 2, 2, 4, 4, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 2, 1, 2, 1, 2, 4, 2, 2, 8
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
a[n_] := 2^IntegerExponent[DivisorSigma[2, n], 2]; Array[a, 100] (* Amiram Eldar, Oct 01 2023 *)
-
PARI
A082902(n) = gcd(2^n, sigma(n, 2)); \\ Antti Karttunen, Sep 27 2018
Formula
Multiplicative with a(2^e) = 1, and a(p^e) = A006519(e+1) for an odd prime p. - Amiram Eldar, Oct 01 2023