A271834 a(n) = 2^n - Sum_{m=0..n} binomial(n/gcd(n,m), m/gcd(n,m)) = 2^n - A082906.
0, 0, 0, 4, 0, 42, 0, 116, 162, 730, 0, 2458, 0, 11494, 16890, 32628, 0, 180960, 0, 554994, 931476, 2800534, 0, 11005898, 6643750, 43946838, 44738892, 136580910, 0, 720879712, 0, 2147450740, 3250382916, 10923409738, 11517062060, 45683761528, 0, 172783692982
Offset: 1
Examples
Sum_{m=1..2500} r(m)/2500 = 0.391460... Sum_{m=2501..5000} r(m)/2500 = 0.391975... Sum_{m=1..5000} r(m)/5000 = 0.391718...
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..1000
- Stanislav Sykora, Ratios A271834(n)/2^n for n=1..5000
Programs
-
Maple
A271834:=n->2^n-add(binomial(n/gcd(n,m),m/gcd(n,m)),m=0..n): seq(A271834(n), n=1..50); # Wesley Ivan Hurt, Apr 19 2016
-
Mathematica
Table[2^n - Sum[Binomial[n/GCD[n, m], m/GCD[n, m]], {m, 0, n}], {n, 40}] (* Wesley Ivan Hurt, Apr 19 2016 *)
-
PARI
bcg(n,m)=binomial(n/gcd(n,m),m/gcd(n,m)); a = vector(1000,n,2^n-vecsum(vector(n+1,m,bcg(n,m-1))))
Formula
For prime p, a(p) = 0.
For any n, a(n) < 2^n - n(n+1)/2.
Comments