A082920 Squares that are the sum of four factorials.
4, 9, 16, 169, 361, 729, 961, 1444, 10201, 403225, 725904
Offset: 1
Keywords
Examples
These appear to be the only solutions to a! + b! + c! + d! = n^2: a b c d n 0 0 0 0 4 0 0 0 1 4 0 0 0 3 9 0 0 1 1 4 0 0 1 3 9 0 1 1 1 4 0 1 1 3 9 0 2 3 6 729 0 4 4 5 169 0 4 8 9 403225 0 5 5 5 361 0 5 5 6 961 0 5 7 7 10201 1 1 1 1 4 1 1 1 3 9 1 2 3 6 729 1 4 4 5 169 1 4 8 9 403225 1 5 5 5 361 1 5 5 6 961 1 5 7 7 10201 2 2 3 3 16 2 2 6 6 1444 4 5 9 9 725904 1!+2!+3!+6! = 729 = 27^2. This shows that 4 factorials can add to a cube.
Crossrefs
Cf. A082875.
Programs
-
Maple
S:= {}: N:= 100: # for terms < (N+1)! F:= [seq(i!,i=1..N)]: for a from 1 to N do for b from a to N do for c from b to N do for d from c to N do if issqr(F[a]+F[b]+F[c]+F[d]) then S:= S union {F[a]+F[b]+F[c]+F[d]} fi od od od od: sort(convert(S,list)); # Robert Israel, Dec 23 2024
-
Mathematica
e = 75; a = Union[ Flatten[ Table[a! + b! + c! + d!, {a, 1, e}, {b, a, e}, {c, b, e}, {d, c, e}]]]; l = Length[a]; Do[ If[ IntegerQ[ Sqrt[ a[[i]] ]], Print[ a[[i]] ]], {i, 1, l}] Select[Union[Total/@Tuples[Range[10]!,4]],IntegerQ[Sqrt[#]]&] (* Harvey P. Dale, Aug 23 2014 *)
-
PARI
sum4factsq(n) = { for(a1=0,n, for(a2=a1,n, for(a3=a2,n, for(a4=a3,n, z = a1!+a2!+a3!+a4!; if(issquare(z),print(a1" "a2" "a3" "a4" "z)) ) ) ) ) }
Extensions
Edited, corrected and extended by Robert G. Wilson v, May 26 2003
Offset corrected by Robert Israel, Dec 23 2024