A082943 Positive numbers not divisible by any of their digits nor by the sum of their digits.
23, 29, 34, 37, 38, 43, 46, 47, 49, 53, 56, 57, 58, 59, 67, 68, 69, 73, 74, 76, 78, 79, 83, 86, 87, 89, 94, 97, 98, 223, 227, 229, 233, 239, 249, 253, 257, 259, 263, 267, 269, 277, 283, 289, 293, 299, 323, 329, 334, 337, 338, 343, 346, 347, 349, 353, 356
Offset: 1
Examples
38 is neither divisible by 3 nor 8 nor 11 (i.e. 3+8).
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
filter:= proc(n) local L; L:= convert(n,base,10); not member(0,L) and not ormap(t -> n mod t = 0, [op(L),convert(L,`+`)]) end proc: select(filter, [$1..1000]); # Robert Israel, Mar 19 2025
-
Mathematica
test1[n_] := Module[{dig = IntegerDigits[n]}, Union[Table[IntegerQ[n/dig[[i]]], {i, Length[dig]}]]] == {False}; test2[n_] := Module[{dig = IntegerDigits[n]}, Not[IntegerQ[n/Sum[dig[[i]], {i, Length[dig]}]]]]; Table[If[test1[n] && test2[n], n, 0], {n, 200}] // Union // Rest (* José María Grau Ribas, Feb 17 2010 *) ndQ[n_]:=Module[{idn=IntegerDigits[n]},FreeQ[idn,0]&&NoneTrue[n/ Join[ idn, {Total[idn]}],IntegerQ]]; Select[Range[2000],ndQ] (* Harvey P. Dale, Oct 19 2016 *)
Extensions
More terms from Harvey P. Dale, Oct 19 2016
Comments