A082981 Start with the sequence S(0)={1,1} and for k>0 define S(k) to be I(S(k-1)) where I denotes the operation of inserting, for i=1,2,3..., the term a(i)+a(i+1) between any two terms for which 4a(i+1)<=5a(i). The listed terms are the initial terms of the limit of this process as k goes to infinity.
1, 2, 3, 4, 9, 14, 19, 24, 53, 82, 111, 140, 309, 478, 647, 816, 1801, 2786, 3771, 4756, 10497, 16238, 21979, 27720, 61181, 94642, 128103, 161564, 356589, 551614, 746639, 941664, 2078353, 3215042, 4351731, 5488420, 12113529, 18738638, 25363747
Offset: 1
Keywords
Links
- Ivan Neretin, Table of n, a(n) for n = 1..1000
- John W. Layman, Ratio-Determined Insertion Sequences and the Tree of their Recurrence Types, June 2003 [Broken link]
- John W. Layman, Ratio-Determined Insertion Sequences and the Tree of their Recurrence Types, June 2003 [local copy, corrected]
- John W. Layman, Sequences Generated by Age-Determined Insertion Trees, Jan 2006
- John W. Layman, Sequences Generated by Age-Determined Insertion Trees, Jan 2006 [Local copy]
Programs
-
Mathematica
Most@Nest[If[#[[-2]] >= 4 #[[-1]], Append[Most@#, #[[-1]] + #[[-2]]], Insert[#, #[[-1]] + #[[-2]], -2]] &, {1, 1}, 47] (* Ivan Neretin, Apr 27 2017 *)
Formula
It appears that a(n)=6a(n-4)-a(n-8).
Empirical g.f.: x*(x+1)^2*(x^2+1)^2/((x^4-2*x^2-1)*(x^4+2*x^2-1)). - Colin Barker, Nov 06 2014
Comments