cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A085260 Ratio-determined insertion sequence I(0.0833344) (see the link below).

Original entry on oeis.org

1, 12, 155, 2003, 25884, 334489, 4322473, 55857660, 721827107, 9327894731, 120540804396, 1557702562417, 20129592507025, 260127000028908, 3361521407868779, 43439651302265219, 561353945521579068
Offset: 1

Views

Author

John W. Layman, Jun 23 2003

Keywords

Comments

This sequence is the ratio-determined insertion sequence (RDIS) "twin" to A078362 (see the link for an explanation of "twin"). See A082630 or A082981 for recent examples of RDIS sequences.
a(n) = L(n,13), where L is defined as in A108299. - Reinhard Zumkeller, Jun 01 2005
For n >= 2, a(n) equals the permanent of the (2n-2) X (2n-2) tridiagonal matrix with sqrt(11)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Seems to be positive values of x (or y) satisfying x^2 - 13xy + y^2 + 11 = 0. - Colin Barker, Feb 10 2014
It appears that the b-file, formulas and programs are based on the conjectured, so far apparently unproved recurrence relation. - M. F. Hasler, Nov 05 2018
Nonnegative y values in solutions to the Diophantine equation 11*x^2 - 15*y^2 = -4. The corresponding x values are in A126866. Note that a(n+1)^2 - a(n)*a(n+2) = -11. - Klaus Purath, Mar 21 2025

Crossrefs

Row 13 of array A094954.
Cf. similar sequences listed in A238379.

Programs

  • Magma
    I:=[1,12]; [n le 2 select I[n] else 13*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 18 2018
  • Mathematica
    CoefficientList[Series[(1 - x)/(1 - 13 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
    LinearRecurrence[{13,-1}, {1,12}, 30] (* G. C. Greubel, Jan 18 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec(x*(1-x)/(1-13*x+x^2)) \\ G. C. Greubel, Jan 18 2018
    

Formula

It appears that the sequence satisfies a(n+1) = 13*a(n) - a(n-1). [Corrected by M. F. Hasler, Nov 05 2018]
If the recurrence a(n+2) = 13*a(n+1) - a(n) holds then for n > 0, a(n)*a(n+3) = 143 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
G.f.: x*(1-x)/(1 - 13*x + x^2). - Philippe Deléham, Nov 17 2008
For n>1, a(n) is the numerator of the continued fraction [1,11,1,11,...,1,11] with (n-1) repetitions of 1,11. - Greg Dresden, Sep 10 2019

A085376 Ratio-dependent insertion sequence I(0.36704) (see the link below).

Original entry on oeis.org

1, 3, 11, 30, 109, 297, 1079, 2940, 10681, 29103, 105731, 288090, 1046629, 2851797, 10360559, 28229880, 102558961, 279447003, 1015229051, 2766240150, 10049731549, 27382954497, 99482086439, 271063304820, 984771132841
Offset: 1

Views

Author

John W. Layman, Jun 26 2003

Keywords

Comments

This sequence is the ratio-determined insertion sequence (RDIS) "twin" of I(0.37802)=A080874 and "child" of I(0.33344)=A001835 and I(0.38208)=A001906 in the RDIS recurrence tree (see the link for an explanation of terms). See A082630, A082981, A085348 and A085349 for recent examples of RDIS sequences.
Conjecture: partial sums of A129445. - Sean A. Irvine, Jul 14 2022

Crossrefs

Formula

It is conjectured that a(n) = 10*a(n-2) - a(n-4).
Apparently a(n)*a(n+3) = -3 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004

A085348 Ratio-determined insertion sequence I(0.264) (see the link below).

Original entry on oeis.org

1, 4, 19, 72, 341, 1292, 6119, 23184, 109801, 416020, 1970299, 7465176, 35355581, 133957148, 634430159, 2403763488, 11384387281, 43133785636, 204284540899, 774004377960, 3665737348901, 13888945017644, 65778987739319
Offset: 0

Views

Author

John W. Layman, Jun 24 2003

Keywords

Comments

This is one of the "twin" ratio-determined insertion sequences (RDIS) that are "children" in the next generation below the "parent" sequences I(0.25024) (A004253) and I(0.26816) (A001353) in the recurrence tree of RDIS sequences. The RDIS twin of this sequence is A085349. See the link for an explanation of RDIS twin. See A082630 or A082981 for other recent examples of RDIS sequences.
Assuming that a(n) = 18a(n-2) - a(n-4) is true: For n >= 2, a(n) = (t(i+2n+2) - t(i))/(t(i+n+2) + t(i+n)*(-1)^(n-1)), where (t) is any recurrence of the form (4,1) without regard to initial values. With an additional initional 0 is this sequence the union of A060645 for even n and A049629 for odd n. - Klaus Purath, Sep 22 2024

Crossrefs

Formula

It appears that a(n)=18a(n-2)-a(n-4).
Apparently a(n)a(n+3) = -4 + a(n+1)a(n+2). - Ralf Stephan, May 29 2004
From Klaus Purath, Sep 22 2024: (Start)
Assuming that a(n) = 18a(n-2) - a(n-4) is true:
a(2n) = 5a(2n-1) - a(2n-2), n >= 1.
a(2n+1) = 4a(2n) - a(2n-1), n >= 1. (End)

A085349 Ratio-determined insertion sequence I(0.26688) (see the link below).

Original entry on oeis.org

1, 4, 15, 71, 269, 1274, 4827, 22861, 86617, 410224, 1554279, 7361171, 27890405, 132090854, 500473011, 2370274201, 8980623793, 42532844764, 161150755263, 763220931551, 2891732970941, 13695443923154, 51890042721675
Offset: 1

Views

Author

John W. Layman, Jun 24 2003

Keywords

Comments

This is one of the "twin" ratio-determined insertion sequences (RDIS) that are "children" in the next generation below the "parent" sequences I(0.25024) (A004253) and I(0.26816) (A001353) in the recurrence tree of RDIS sequences. The RDIS twin of this sequence is A085348. See the link for an explanation of RDIS twin. See A082630 or A082981 for other recent examples of RDIS sequences.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,18,0,-1},{1,4,15,71},30] (* Harvey P. Dale, Mar 04 2013 *)

Formula

It appears that a(n)=18a(n-2)-a(n-4).
Apparently a(n)a(n+3) = 11 + a(n+1)a(n+2). - Ralf Stephan, May 29 2004
Showing 1-4 of 4 results.