A083061 Triangle of coefficients of a companion polynomial to the Gandhi polynomial.
1, 1, 3, 4, 15, 15, 34, 147, 210, 105, 496, 2370, 4095, 3150, 945, 11056, 56958, 111705, 107415, 51975, 10395, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135, 14873104, 85389132, 197722980, 244909665, 178378200, 77567490
Offset: 0
Examples
Triangle starts (with an additional first column 1,0,0,...): [1] [0, 1] [0, 1, 3] [0, 4, 15, 15] [0, 34, 147, 210, 105] [0, 496, 2370, 4095, 3150, 945] [0, 11056, 56958, 111705, 107415, 51975, 10395] [0, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135]
Links
- R. P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014.
- R. B. Brent, Generalizing Tuenter's Binomial Sums, J. Int. Seq. 18 (2015) # 15.3.2.
- Marc Joye, Pascal Paillier and Berry Schoenmakers, On Second-Order Differential Power Analysis, in Cryptographic Hardware and Embedded Systems-CHES 2005, editors: Josyula R. Rao and Berk Sunar, Lecture Notes in Computer Science 3659 (2005) 293-308, Springer-Verlag.
- H. J. H. Tuenter, Walking into an absolute sum, The Fibonacci Quarterly, 40 (2002), 175-180.
Crossrefs
From Johannes W. Meijer, May 24 2009 and Jun 27 2009: (Start)
A002105 equals the row sums (n>=2) and the first left hand column (n>=1).
(End)
Programs
-
Maple
imax := 6; T1(0, x) := 1: T1(0, x+1) := 1: for i from 1 to imax do T1(i, x) := expand((2*x+1) * (x+1) * T1(i-1, x+1) - 2*x^2*T1(i-1, x)): dx := degree(T1(i, x)): for k from 0 to dx do c(k) := coeff(T1(i, x), x, k) od: T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1 = 0..dx): od: for i from 0 to imax do for j from 0 to i do a(i, j) := coeff(T1(i, x), x, j) od: od: seq(seq(a(i, j), j = 0..i), i = 0..imax); # Johannes W. Meijer, Jun 27 2009, revised Sep 23 2012
-
Mathematica
b[0, 0] = 1; b[n_, k_] := b[n, k] = Sum[2^j*(Binomial[k + j, 1 + j] + Binomial[k + j + 1, 1 + j])*b[n - 1, k - 1 + j], {j, Max[0, 1 - k], n - k}]; a[0, 0] = 1; a[n_, k_] := b[n, k]/2^(n - k); Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 19 2018, after Philippe Deléham *)
-
Sage
# uses[fr2_row from A088874] A083061_row = lambda n: [(-1)^(n-k)*m*2^(-n+k) for k,m in enumerate(fr2_row(n))] for n in (0..7): print(A083061_row(n)) # Peter Luschny, Sep 19 2017
Formula
Let T(i, x)=(2x+1)(x+1)T(i-1, x+1)-2x^2T(i-1, x), T(0, x)=1; so that T(1, x)=1+3x; T(2, x)=4+15x+15x^2; T(3, x)=34+147x+210x^2+105x^3, etc. Then the (i, j)-th entry in the table is the coefficient of x^j in T(i, x).
a(n, k)*2^(n-k) = A085734(n, k). - Philippe Deléham, Feb 27 2005
Comments