cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A091759 a(n) = 0^n + 2((n+1)^n - (-1)^n) / (n+2).

Original entry on oeis.org

1, 2, 4, 26, 208, 2222, 29412, 466034, 8609344, 181818182, 4322904100, 114308980106, 3328297874640, 105828636433886, 3649115753173828, 135637824071393762, 5406799097296318720, 230095953656704898102
Offset: 0

Views

Author

Paul Barry, Feb 03 2004

Keywords

Crossrefs

Cf. A083063.

Programs

  • Maple
    seq(0^n + 2*((n+1)^n-(-1)^n)/(n+2),n=0..20); # Georg Fischer, May 08 2021
  • Mathematica
    P[n_,m_,z_]:= Product[z - Sum[E^(j*k*2*pi*I/n), {k,1,m}], {j,0,n-1}];
    Table[FullSimplify[P[n,n-2,n]], {n,0,12}] (* Georg Fischer, May 08 2021 *)
  • PARI
    a(n) = 0^n + 2*((n+1)^n - (-1)^n) / (n+2); \\ Michel Marcus, May 09 2021

Formula

a(n) = P(n, n-2, n) where P(n, m, z) = Product_{j=0..n-1} (z - Sum_{k=1..m} e^(j*k*2*Pi*I/n)), I=sqrt(-1).

A091760 0^n+3((n+2)^n/(n+3)-(-1)^n/(n+3)).

Original entry on oeis.org

1, 3, 9, 63, 555, 6303, 87381, 1434891, 27272727, 589486923, 14288622513, 384034370151, 11338782475059, 364911575317383, 12716046006693165, 477070508584969299, 19174662804725408175, 822058028667720327891
Offset: 0

Views

Author

Paul Barry, Feb 03 2004

Keywords

Crossrefs

Cf. A083063.
Showing 1-2 of 2 results.