cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083100 a(n) = 2*a(n-1) + 7*a(n-2).

Original entry on oeis.org

1, 9, 25, 113, 401, 1593, 5993, 23137, 88225, 338409, 1294393, 4957649, 18976049, 72655641, 278143625, 1064876737, 4076758849, 15607654857, 59752621657, 228758827313, 875786006225, 3352883803641, 12836269650857, 49142725927201
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Apr 23 2003

Keywords

Comments

a(n) = a(n-1) + 8*A015519(n). a(n)/A015519(n+1) converges to sqrt(8).
a(n-1) is the number of compositions of n when there is 1 type of 1 and 8 types of other natural numbers. - Milan Janjic, Aug 13 2010

Crossrefs

Essentially a duplicate of A084058.
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.

Programs

  • Magma
    I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1) + 7*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 08 2018
  • Mathematica
    CoefficientList[Series[(1 + 7 x)/(1 - 2 x - 7 x^2), {x, 0, 25}], x] (* Or *) a[n_] := Simplify[((1 + Sqrt[8])^n + (1 - Sqrt[8])^n)/2]; Array[a, 25, 0] (* Or *) LinearRecurrence[{2, 7}, {1, 1}, 28] (* Or *) Table[ MatrixPower[{{1, 2}, {4, 1}}, n][[1, 1]], {n, 0, 25}] (* Robert G. Wilson v, Sep 18 2013 *)
  • PARI
    a(n)=([0,1; 7,2]^n*[1;9])[1,1] \\ Charles R Greathouse IV, Apr 06 2016
    
  • PARI
    x='x+O('x^30); Vec((1+7*x)/(1-2*x-7*x^2)) \\ G. C. Greubel, Jan 08 2018
    

Formula

G.f.: (1+7*x)/(1-2*x-7*x^2).
a(n) = binomial transform of 1,8,8,64,64,512. - Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
If p[1]=1, and p[i]=8,(i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=det A. - Milan Janjic, Apr 29 2010
G.f.: G(0)/(2*x) - 1/x, where G(k)= 1 + 1/(1 - x*(8*k-1)/(x*(8*k+7) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 28 2013