A083178 Numbers with a digit sum of n and a maximum product of digits. In case of two identical products choose the largest number.
1, 2, 3, 22, 32, 33, 322, 332, 333, 3322, 3332, 3333, 33322, 33332, 33333, 333322, 333332, 333333, 3333322, 3333332, 3333333, 33333322, 33333332, 33333333, 333333322, 333333332, 333333333, 3333333322, 3333333332, 3333333333
Offset: 1
Crossrefs
Cf. A000792.
Programs
-
Python
from _future_ import division def A083178(n): return 1 if n == 1 else (2*10**((n+2)//3)+(63*(n%3)**2-129*(n%3)-2))//6 # Chai Wah Wu, Dec 11 2015
Formula
Conjecture: a(n) = 10*a(n-3)+a(n-6)-10*a(n-9) for n>10. - Colin Barker, Oct 14 2014
Empirical g.f.: x*(90*x^6+10*x^4+11*x^3+3*x^2+2*x+1) / ((x-1)*(x^2+x+1)*(10*x^3-1)). - Colin Barker, Oct 14 2014
For n > 7, a(n) = 11*a(n-3)-10*a(n-6). For n > 4, a(n-3) + 3*10^(floor((n-1)/3)). For n > 1, (2*10^(floor((n+2)/3))+(63*m^2-129*m-2))/6, where m is the least nonnegative residue of n mod 3. - Chai Wah Wu, Dec 11 2015
Extensions
Corrected and extended by David Wasserman, Oct 25 2004
Comments