A083251 Numbers n such that abs(A045763(n) - A073757(n)) = 2, i.e., signed difference of size of related and unrelated sets to n equals either 2 or -2.
2, 48, 72, 80, 112, 176, 208, 272, 304, 368, 464, 496, 592, 656, 688, 752, 848, 944, 976, 1072, 1136, 1168, 1264, 1328, 1424, 1552, 1616, 1648, 1712, 1744, 1808, 2032, 2096, 2192, 2224, 2384, 2416, 2512, 2608, 2672, 2768, 2864, 2896
Offset: 1
Keywords
Examples
For n=2896: d=10 divisors, r=1440 coprimes, u=1447 unrelated or n - u = r + d - 1 = 1449 related numbers to n; thus abs(1449 - 1447) = 2.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Do[r=EulerPhi[n]; d=DivisorSigma[0, n]; u=n-r-d+1; df=2*u-n; If[Equal[Abs[df], 2], Print[n(*, {d, r, u}*)]], {n, 1, 3000}]
Formula
a(n) = 8 * (A076274(n-1) + 1) for n > 3, as proved by Lawrence Sze. - Ralf Stephan, Nov 16 2004