cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A083252 Numbers k for which abs(A045763(k) - A073757(k)) = 5, i.e., signed difference of size of related and unrelated sets to k equals either 5 or -5.

Original entry on oeis.org

5, 105, 315, 182835, 960075, 7838265, 4291166265
Offset: 1

Views

Author

Labos Elemer, May 07 2003

Keywords

Comments

a(7), if it exists, is > 10^9. - Vaclav Kotesovec, Sep 06 2019

Examples

			For k = 960075: d = 36 divisors, r = 480000 coprimes, u = 480040 unrelated; k - u = r + d - 1 = 480035 related numbers to k; thus abs(480040 - 480035) = 5.
		

Crossrefs

Programs

  • Mathematica
    Do[r=EulerPhi[n]; d=DivisorSigma[0, n]; u=n-r-d+1; df=2*u-n; If[Equal[Abs[df], 5], Print[n(*, {d, r, u}*)]], {n, 1, 3000}]
  • PARI
    isok(n) = abs(n-2*eulerphi(n)-2*numdiv(n)+2) == 5; \\ Michel Marcus, Jul 29 2017

Extensions

a(6) from Michel Marcus, Jul 29 2017
a(7) from Amiram Eldar, Feb 02 2025

A083253 Smallest number k for which abs(A045763(k) - A073757(k)) = n, i.e., signed difference of size of related and unrelated sets to k equals either n or -n.

Original entry on oeis.org

30, 1, 2, 3, 4, 5, 8, 7, 16, 21, 32, 11, 64, 13, 84, 27, 78, 17, 200, 19, 90, 57, 140, 23, 102, 69, 120, 435, 114, 29, 132, 31, 126, 93, 392, 81, 138, 37, 156, 49, 230, 41, 168, 43, 322, 129, 260, 47, 150, 77, 180, 795, 186, 53, 204, 95, 198, 885, 280, 59, 434, 61, 228, 183
Offset: 0

Views

Author

Labos Elemer, May 07 2003

Keywords

Comments

a(258) > 10^5. - Michael De Vlieger, Jul 31 2017

Examples

			A045763(x) - A073757(x) = 0 is first satisfied at x = 30 = a(0).
		

Crossrefs

Programs

  • Mathematica
    With[{s = Table[Abs[n - 2 (DivisorSigma[0, n] + EulerPhi[n] - 1)], {n, 10^3}]}, TakeWhile[#, # > 0 &] &@ Flatten@ Map[FirstPosition[s, #] /. k_ /; MissingQ@ k -> 0 &, Range[0, Max@ s]]] (* Michael De Vlieger, Jul 31 2017 *)
  • PARI
    a(n) = {my(k = 1); while (abs(k - 2*(numdiv(k) + eulerphi(k) - 1)) != n, k++); k;} \\ Michel Marcus, Aug 01 2017

Formula

a(n) = min{x; abs(A045763(x) - A073757(x)) = n}.
a(p) = p, for p prime.
Showing 1-2 of 2 results.