cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A083258 a(n) = gcd(A046523(n), n).

Original entry on oeis.org

1, 2, 1, 4, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 3, 16, 1, 6, 1, 4, 3, 2, 1, 24, 1, 2, 1, 4, 1, 30, 1, 32, 3, 2, 1, 36, 1, 2, 3, 8, 1, 6, 1, 4, 3, 2, 1, 48, 1, 2, 3, 4, 1, 6, 1, 8, 3, 2, 1, 60, 1, 2, 3, 64, 1, 6, 1, 4, 3, 10, 1, 72, 1, 2, 3, 4, 1, 6, 1, 16, 1, 2, 1, 12, 1, 2, 3, 8, 1, 30, 1, 4, 3, 2, 1, 96, 1, 2
Offset: 1

Views

Author

Labos Elemer, May 09 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[GCD[n, Times @@ MapIndexed[Prime[First[#2]]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]]], {n, 98}] (* Michael De Vlieger, May 21 2017 *)
  • PARI
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A083258(n) = gcd(n,A046523(n)); \\ Antti Karttunen, May 21 2017

A083259 a(n) = gcd(n, A071364(n)), where A071364(n) is the smallest number with same sequence of exponents in canonical prime factorization as n.

Original entry on oeis.org

1, 2, 1, 4, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 3, 16, 1, 18, 1, 4, 3, 2, 1, 24, 1, 2, 1, 4, 1, 30, 1, 32, 3, 2, 1, 36, 1, 2, 3, 8, 1, 6, 1, 4, 3, 2, 1, 48, 1, 2, 3, 4, 1, 54, 1, 8, 3, 2, 1, 60, 1, 2, 3, 64, 1, 6, 1, 4, 3, 10, 1, 72, 1, 2, 3, 4, 1, 6, 1, 16, 1, 2, 1, 12, 1, 2, 3, 8, 1, 90, 1, 4, 3, 2, 1, 96, 1
Offset: 1

Views

Author

Labos Elemer, May 09 2003

Keywords

Crossrefs

Programs

A083261 a(n) = gcd(A046523(n+1), A046523(n)).

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 6, 6, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 6, 6, 6, 2, 2, 6, 6, 2, 2, 2, 2, 12, 6, 2, 2, 4, 4, 6, 6, 2, 2, 6, 6, 6, 6, 2, 2, 2, 2, 6, 4, 2, 6, 2, 2, 6, 6, 2, 2, 2, 2, 6, 12, 6, 6, 2, 2, 16, 2, 2, 2, 6, 6, 6, 6, 2, 2, 6, 6, 6, 6, 6, 6, 2, 2, 12, 12, 2, 2, 2, 2
Offset: 1

Views

Author

Labos Elemer, May 09 2003

Keywords

Crossrefs

Programs

Showing 1-3 of 3 results.