A083281 Decimal expansion of h = Product_{p prime}(sqrt(p(p-1))*log(1/(1-1/p))).
9, 6, 9, 2, 7, 6, 9, 4, 3, 8, 2, 7, 4, 9, 1, 6, 3, 0, 7, 1, 6, 9, 5, 3, 7, 1, 4, 7, 2, 0, 9, 0, 7, 3, 2, 2, 6, 6, 2, 1, 3, 6, 8, 8, 6, 3, 8, 4, 9, 1, 6, 2, 1, 8, 1, 6, 1, 7, 8, 5, 8, 8, 7, 5, 1, 9, 5, 0, 5, 7, 0, 0, 2, 8, 3, 8, 7, 4, 0, 1, 9, 7, 3, 4, 7, 7, 8, 6, 5, 0, 8, 3, 3, 7, 3, 4, 2, 7, 6, 6, 5, 0, 9, 4, 8, 9
Offset: 0
Examples
0.96927694382749163071695371472090732266213688638491621816178588751950570028...
References
- G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, collection SMF no. 1, 1995, p. 210.
Links
- S. Ramanujan, Some formulae in the analytic theory of numbers, Messenger of Mathematics, Vol. 45 (1916), pp. 81-84.
- B. M. Wilson, Proofs of some formulae enunciated by Ramanujan, Proceedings of the London Mathematical Society, s2-21 (1923), pp. 235-255.
Programs
-
Mathematica
$MaxExtraPrecision = 1000; m = 1000; f[p_] := Sqrt[p*(p - 1)]*Log[p/(p - 1)]; c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; RealDigits[Exp[NSum[Indexed[c, k]*PrimeZetaP[k], {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]] (* Amiram Eldar, Jun 19 2019 *)
-
PARI
prod(k=1,40000,sqrt(prime(k)*(prime(k)-1))*log(1/(1-1/prime(k))))
Formula
Equals A345231 * sqrt(Pi). - Vaclav Kotesovec, Jun 13 2021
Extensions
10 more digits from R. J. Mathar, Jan 31 2009
More terms from Amiram Eldar, Jun 19 2019
More digits from Vaclav Kotesovec, Jun 13 2021
Comments