A083286 Decimal expansion of K(3), a constant related to the Josephus problem.
1, 6, 2, 2, 2, 7, 0, 5, 0, 2, 8, 8, 4, 7, 6, 7, 3, 1, 5, 9, 5, 6, 9, 5, 0, 9, 8, 2, 8, 9, 9, 3, 2, 4, 1, 1, 3, 0, 6, 6, 1, 0, 5, 5, 6, 2, 3, 1, 3, 0, 3, 7, 4, 3, 2, 1, 8, 5, 4, 4, 3, 3, 8, 7, 3, 7, 8, 4, 3, 3, 9, 9, 9, 7, 2, 7, 4, 8, 4, 4, 7, 6, 3, 8, 3, 6, 1, 6, 5, 3, 9, 8, 3, 3, 2, 3, 3, 4, 1, 1, 0, 0
Offset: 1
Examples
1.62227050288476731595695...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 2.13 and 2.30.1, pp. 131, 196.
Links
- A.H.M. Smeets, Table of n, a(n) for n = 1..20000
- A. M. Odlyzko and H. S. Wilf, Functional iteration and the Josephus problem, Glasgow Math. J. 33 (1991), 235-240.
- A.H.M. Smeets, 100000 decimal digits.
- E. T. H. Wang, Phillip C. Washburn, Problem E2604, American Mathematical Monthly, 84 (1977), 821-822.
- Eric Weisstein's World of Mathematics, Power Ceilings.
- Index entries for sequences related to the Josephus Problem.
Programs
-
Mathematica
s[x_, 0] := 0; s[x_, n_] := Floor[x*s[x, n - 1]] + 1 c[x_, n_] := ((1/x)^n) s[x, n] t = N[c[3/2, 800], 120] RealDigits[t, 10] (* A083286 *) (* Display of the surroundings of 3/2 *) Plot[N[c[x, 20]], {x, 1, 3}] (* Clark Kimberling, Oct 24 2012 *)
-
PARI
p=1; N=10^4; for(n=1, N, p=ceil(3/2*p)); c=(p/(3/2)^N)+0.
-
Python
d, a, n, nmax = 3, 0, 0, 150000 while n < nmax: n, a = n+1, (a*d)//(d-1)+1 nom, den, pos = a*(d-1)**n, d**n, 0 while pos < 20000: dig, nom, pos = nom//den, (nom%den)*10, pos+1 print(pos,dig) # A.H.M. Smeets, Jul 05 2019
Comments