cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A073941 a(n) = ceiling((Sum_{k=1..n-1} a(k)) / 2) for n >= 2 starting with a(1) = 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 9, 14, 21, 31, 47, 70, 105, 158, 237, 355, 533, 799, 1199, 1798, 2697, 4046, 6069, 9103, 13655, 20482, 30723, 46085, 69127, 103691, 155536, 233304, 349956, 524934, 787401, 1181102, 1771653, 2657479, 3986219, 5979328, 8968992
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 20 2002

Keywords

Comments

a(n) is the number of even integers that have n-1 digits when written in base 3/2. For example, there are 2 even integers that use three digits in base 3/2: 6 and 8: they are written as 210 and 212, respectively. - Tanya Khovanova and PRIMES STEP Senior group, Jun 03 2018
From Petros Hadjicostas, Jul 20 2020: (Start)
We describe Schuh's counting-off game (pp. 373-375 and 377-379). Assume m people are standing on a circle and they are labeled 1 through m (say clockwise). We start with the person labeled 1 and every 3rd person drops out (in a variation of the famous Josephus problem). The process is repeated until only one person is left.
This sequence describes those numbers m for which either the person labeled 1 or the person labeled 2 is the last survivor.
From a(4) = 2 to a(53) = 775795914 (see T. D. Noe's b-file), the values agree with those in Schuh (1968, p. 374) and Burde (1987, p. 207). a(54) = 1163693871 while both Schuh and Burde have 1063693871 (a difference in the 2nd digit starting on the left). a(55) = 1745540806 while both Schuch and Burde have 1595540806.
Schuh (1968) obtains the numbers in the following way. Suppose we know a(n) and the corresponding number i(n) of the last survivor (i(n) = 1 or 2). We multiply a(n) by 3/2 (cf. Burde's use of fractional bases).
If the product is an integer, that is a(n+1) and the corresponding last survivor is the same.
If the product is not an integer, then a(n+1) = floor(a(n)*3/2) if the last survivor i(n) = 2 (and the new last survivor is i(n+1) = 1), and a(n+1) = ceiling(a(n)*3/2) if the last survivor is i(n) = 1 (and the new last survivor is i(n+1) = 2).
Note that a(53) = 775795914 and a(54) = (3/2)*a(53) = 1163693871 (not 1063693871), so it seems Schuh did a mistake and Burde copied it. Also (3/2)*1163693871 = 1745540806.5. Since a(53) = 775795914 corresponds to number 2, we round down, i.e., a(54) = 1745540806 (and move to number 1). If, however, we multiply the incorrect 1063693871 by 3/2 and round down, we get Schuh and Burde's incorrect value 1595540806 for a(54).
Numbers a(n) that correspond to last survivors being number 1 are tabulated in A081614 while numbers a(n) that correspond to last survivors being number 2 are tabulated in A081615. (End)
a(n) is the number of times (n-1) appears in A061420. - Chinmaya Dash, Aug 19 2020

References

  • Fred Schuh, The Master Book of Mathematical Recreations, Dover, New York, 1968. [See Table 18, p. 374. Only the terms from a(6) = 4 forward are shown in the table. The table is definitely related to this sequence.]

Crossrefs

Same as log_2(A082125(n)), for n > 2. - Ralf Stephan, Apr 16 2002
Apart from initial term, same as A005428, which has further information.
a(n+4) = A079719(n)+2. Cf. A082416.
Partial sums for various start indices are in A006999, A061419, A061418. - Ralf Stephan, Apr 17 2003
Is this the same as A081848/3?
The constant c is (2/9)*K(3) (see A083286). - Ralf Stephan, May 29 2003

Programs

  • Haskell
    a073941 n = a073941_list !! (n-1)
    a073941_list = 1 : f [1] where
       f xs = x' : f (x':xs) where x' = (1 + sum xs) `div` 2
    -- Reinhard Zumkeller, Oct 26 2011
    
  • Mathematica
    f[s_] := Append[s, Ceiling[Plus @@ s/2]]; Nest[f, {1}, 41] (* Robert G. Wilson v, Jul 07 2006 *)
  • PARI
    v=vector(100);s=v[1]=1;for(i=2,#v,s+=(v[i]=(s+1)\2));v \\ Charles R Greathouse IV, Feb 11 2011
    
  • Python
    from itertools import islice
    def A073941_gen(): # generator of terms
        a, c = 1, 0
        yield 1
        while True:
            yield (a:=(c:=c+a)+1>>1)
    A073941_list = list(islice(A073941_gen(),70)) # Chai Wah Wu, Sep 20 2022

Formula

a(n) = ceiling(c*(3/2)^n-1/2) where c = 0.3605045561966149591015446628665... - Benoit Cloitre, Nov 22 2002
If 2^m divides a(i) then 2^(m-1)*3^1 divides a(i+1) and so on... until finally, 3^m divides a(i+m). - Ralf Stephan, Apr 20 2003
a(n) = A081848(n)/3. - Tom Edgar, Jul 21 2014
a(n) = A005428(n-2). - Tanya Khovanova and PRIMES STEP Senior group, Jun 03 2018

A072493 a(1) = 1 and a(n) = ceiling((Sum_{k=1..n-1} a(k))/3) for n >= 2.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 22, 29, 39, 52, 69, 92, 123, 164, 218, 291, 388, 517, 690, 920, 1226, 1635, 2180, 2907, 3876, 5168, 6890, 9187, 12249, 16332, 21776, 29035, 38713, 51618, 68824, 91765, 122353, 163138, 217517, 290023, 386697
Offset: 1

Views

Author

Benoit Cloitre, Nov 22 2002

Keywords

Comments

Is this sequence, with its first 8 terms removed, the same as A005427? See also the similar conjecture with A005428/A073941. - Ralf Stephan, Apr 04 2003
Yes; the first 8 terms sum to 15, so upon dividing by 3 they are equivalent to the +5 in the formula for A005427. - Charlie Neder, Jan 10 2019
From Petros Hadjicostas, Jul 21 2020: (Start)
Conjecture 1: a(n) equals the number of multiples of 3 whose representation in base 4/3 (see A024631) has n-1 digits. For example, a(8) = 4 because there are four multiples of 3 with n-1 = 7 digits in their representation in base 4/3: 33 = 3210201, 36 = 3210230, 39 = 3210233, and 42 = 3213122.
Conjecture 2: a(n) equals 1/4 times the number of nonnegative integers with the property that their 4/3-expansion has n digits (assuming that the 4/3-expansion of 0 has 1 digit). For example, a(7)*4 = 12 because the following 12 numbers have 4/3 expansions with n = 7 digits: 32 = 3210200, 33 = 3210201, 34 = 3210202, ..., 42 = 3213122, 43 = 3213123. (End)

Crossrefs

Programs

  • Mathematica
    f[s_] := Append[s, Ceiling[Plus @@ s/3]]; Nest[f, {1}, 52] (* Robert G. Wilson v, Jul 07 2006 *)
  • PARI
    lista(nn) = {va = vector(nn); va[1] = 1; for (n=2, nn, va[n] = ceil(sum(k=1, n-1, va[k])/3);); va;} \\ Michel Marcus, Apr 16 2015

Formula

a(n) = ceiling(c*(4/3)^n - 1/2) where c = 0.389324199524937508840138455...
From Petros Hadjicostas, Jul 21 2020: (Start)
Conjecture: The constant c above equals (3/16)*K(4), where K(q) = C(q/(q-1)) (q > 1) is described in Odlyzko and Wilf (1991).
For a > 1, the constant C(a) = limit_{n -> infinity} f_n(a)/a^n, where f_{n+1}(a) = ceiling(a*f_n(a)) for n >= 0 and f_0(a) = 1.
Thus, K(4) = limit_{n -> infinity} f_n(4/3)/(4/3)^n = 2.076395730799666... We have K(2) = 1 and K(3) = A083286 = 1.622270502884767315... (End)

A061419 a(n) = ceiling(a(n-1)*3/2) with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 5, 8, 12, 18, 27, 41, 62, 93, 140, 210, 315, 473, 710, 1065, 1598, 2397, 3596, 5394, 8091, 12137, 18206, 27309, 40964, 61446, 92169, 138254, 207381, 311072, 466608, 699912, 1049868, 1574802, 2362203, 3543305, 5314958, 7972437, 11958656
Offset: 1

Views

Author

Henry Bottomley, May 02 2001

Keywords

Comments

It appears that this sequence is the (L)-sieve transform of {3,6,9,12,...,3n,...} = A008585. (See A152009 for the definition of the (L)-sieve transform.) - John W. Layman, Jan 06 2009

Examples

			a(6) = ceiling(8*3/2) = 12.
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.30.1, p. 196.

Crossrefs

First differences are in A073941.

Programs

  • Magma
    [ n eq 1 select 1 else Ceiling(Self(n-1)*3/2): n in [1..40] ]; // Klaus Brockhaus, Nov 14 2008
    
  • Maple
    a:=proc(n) option remember: if n=1 then 1 else ceil(procname(n-1)*3/2) fi; end; seq(a(n),n=1..40); # Muniru A Asiru, Jun 07 2018
  • Mathematica
    a=1;a=Table[a=Ceiling[a*3/2],{n,0,4!}] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2010 *)
    NestList[Ceiling[3#/2]&,1,39] (* Stefano Spezia, Dec 08 2024 *)
  • PARI
    { a=2/3; for (n=1, 500, write("b061419.txt", n, " ", a=ceil(a*3/2)) ) } \\ Harry J. Smith, Jul 22 2009
    
  • Python
    from itertools import islice
    def A061419_gen(): # generator of terms
        a = 2
        while True:
            yield a-1
            a += a>>1
    A061419_list = list(islice(A061419_gen(),70)) # Chai Wah Wu, Sep 20 2022

Formula

a(n) = A061418(n) - 1 = floor(K*(3/2)^n) where K = 1.08151366859...
The constant K is (2/3)*K(3) (see A083286). - Ralf Stephan, May 29 2003
a(1) = 1, a(n) = A070885(n)/3. - Benoit Cloitre, Aug 18 2002
a(n) = ceiling((a(n-1) + a(n-2))*9/10) - Franklin T. Adams-Watters, May 01 2006

A061418 a(n) = floor(a(n-1)*3/2) with a(1) = 2.

Original entry on oeis.org

2, 3, 4, 6, 9, 13, 19, 28, 42, 63, 94, 141, 211, 316, 474, 711, 1066, 1599, 2398, 3597, 5395, 8092, 12138, 18207, 27310, 40965, 61447, 92170, 138255, 207382, 311073, 466609, 699913, 1049869, 1574803, 2362204, 3543306, 5314959, 7972438
Offset: 1

Views

Author

Henry Bottomley, May 02 2001

Keywords

Comments

Can be stated as the number of animals starting from a single pair if any pair of animals can produce a single offspring (as in the game Minecraft, if the player allows offspring to fully grow before breeding again). - Denis Moskowitz, Dec 05 2012
Maximum number of partial products that can be added in a Wallace tree multiplier with n-1 full adder stages. - Chinmaya Dash, Aug 19 2020

Examples

			a(6) = floor(9*3/2) = 13.
		

Crossrefs

First differences are in A073941.

Programs

  • Magma
    [ n eq 1 select 2 else Floor(Self(n-1)*(3/2)): n in [1..39] ]; // Klaus Brockhaus, Nov 14 2008
    
  • PARI
    { a=4/3; for (n=1, 500, a=a*3\2; write("b061418.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 22 2009
    
  • PARI
    first(n) = my(v=vector(n)); v[1]=2; for(i=2, n, v[i]=v[i-1]*3\2); v \\ Iain Fox, Jul 15 2022
    
  • Python
    from itertools import islice
    def A061418_gen(): # generator of terms
        a = 2
        while True:
            yield a
            a += a>>1
    A061418_list = list(islice(A061418_gen(),70)) # Chai Wah Wu, Sep 20 2022

Formula

a(n) = A061419(n) + 1 = ceiling(K*(3/2)^n) where K = 1.08151366859...
The constant K is (2/3)*K(3) (see A083286). - Ralf Stephan, May 29 2003

A006999 Partitioning integers to avoid arithmetic progressions of length 3.

Original entry on oeis.org

0, 1, 2, 4, 7, 11, 17, 26, 40, 61, 92, 139, 209, 314, 472, 709, 1064, 1597, 2396, 3595, 5393, 8090, 12136, 18205, 27308, 40963, 61445, 92168, 138253, 207380, 311071, 466607, 699911, 1049867, 1574801, 2362202, 3543304, 5314957, 7972436
Offset: 0

Views

Author

N. J. A. Sloane, D. R. Hofstadter, and James Propp, Jul 15 1977

Keywords

Comments

a(n) = A006997(3^n-1).
It appears that, aside from the first term, this is the (L)-sieve transform of A016789 ={2,5,8,11,...,3n+2....}. This has been verified up to a(30)=311071. See A152009 for the definition of the (L)-sieve transform. - John W. Layman, Nov 20 2008
a(n) is also the largest-index square reachable in n jumps if we start at square 0 of the Infinite Sidewalk. - Jose Villegas, Mar 27 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A061419, A061418, A005428 (first differences), A083286.
Cf. A003312.

Programs

  • Haskell
    a006999 n = a006999_list !! n
    a006999_list = 0 : map ((`div` 2) . (+ 2) . (* 3)) a006999_list
    -- Reinhard Zumkeller, Oct 26 2011
  • Mathematica
    a[0] = 0; a[n_] := a[n] = Floor[(3 a[n-1] + 2)/2];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 01 2018 *)
  • PARI
    a(n)=if(n<1,0,floor((3*a(n-1)+2)/2))
    

Formula

a(n) = A061419(n) - 1.
a(n) = A061418(n) - 2.
a(n) = floor((3a(n-1)+2)/2).
a(n) = -1 + floor(c*(3/2)^n) where c=1.0815136... - Benoit Cloitre, Jan 10 2002; this constant c is 2/3*K(3) (see A083286). - Ralf Stephan, May 29 2003
a(n+1) = (3*a(n))/2+1 if a(n) is even. a(n+1) = (3*a(n)+1)/2 if a(n) is odd. - Miquel Cerda, Jun 15 2019

Extensions

More terms from James Sellers, Feb 06 2000

A070885 a(n) = (3/2)*a(n-1) if a(n-1) is even; (3/2)*(a(n-1)+1) if a(n-1) is odd.

Original entry on oeis.org

1, 3, 6, 9, 15, 24, 36, 54, 81, 123, 186, 279, 420, 630, 945, 1419, 2130, 3195, 4794, 7191, 10788, 16182, 24273, 36411, 54618, 81927, 122892, 184338, 276507, 414762, 622143, 933216, 1399824, 2099736, 3149604, 4724406, 7086609, 10629915
Offset: 1

Views

Author

Eric W. Weisstein, May 14 2002

Keywords

Comments

The smallest positive number such that A024629(a(n)) has n digits, per page 9 of the Tanton reference in Links. - Glen Whitney, Sep 17 2017

References

  • Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, 2002, p. 123.

Crossrefs

The constant K is 2/3*K(3) (see A083286). - Ralf Stephan, May 29 2003
Cf. A003312.
Cf. A081848.
Cf. A205083 (parity of terms).

Programs

  • Haskell
    a070885 n = a070885_list !! (n-1)
    a070885_list = 1 : map (flip (*) 3 . flip div 2 . (+ 1)) a070885_list
    -- Reinhard Zumkeller, Sep 05 2014
    
  • Maple
    A070885 := proc(n)
        option remember;
        if n = 1 then
            return 1;
        elif type(procname(n-1),'even') then
            procname(n-1) ;
        else
            procname(n-1)+1 ;
        end if;
        %*3/2 ;
    end proc:
    seq(A070885(n),n=1..80) ; # R. J. Mathar, Jun 18 2018
  • Mathematica
    NestList[If[EvenQ[#],3/2 #,3/2 (#+1)]&,1,40] (* Harvey P. Dale, May 18 2018 *)
  • Python
    from itertools import islice
    def A070885_gen(): # generator of terms
        a = 1
        while True:
            yield a
            a += (a+1>>1)+(a&1)
    A070885_list = list(islice(A070885_gen(),70)) # Chai Wah Wu, Sep 20 2022

Formula

For n > 1, a(n) = 3*A061419(n) = 3*floor(K*(3/2)^n) where K=1.08151366859... - Benoit Cloitre, Aug 18 2002
a(n) = 3*ceiling(a(n-1)/2). - Benoit Cloitre, Apr 25 2003
a(n+1) = a(n) + A081848(n), for n > 1. - Reinhard Zumkeller, Sep 05 2014

A214986 Power ceiling array for the golden ratio, by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 7, 8, 5, 1, 1, 12, 21, 22, 7, 1, 1, 20, 55, 94, 48, 12, 1, 1, 33, 144, 399, 329, 134, 18, 1, 1, 54, 377, 1691, 2255, 1487, 323, 30, 1, 1, 88, 987, 7164, 15456, 16492, 5796, 872, 47, 1, 1, 143, 2584, 30348, 105937, 182900
Offset: 1

Views

Author

Clark Kimberling, Oct 28 2012

Keywords

Comments

row 0: A000012 ... row 6: A049660
row 1: A000071 ... row 8: A049668
row 2: A001906 ... col 0: A000012
row 3: A049652 ... col 1: A169986
row 4: A004187
For x>1, define c(x,0) = 1 and c(x,n) = ceiling(x*c(x,n-1)) for n>0. Row m of A214986 is the sequence c(r^m,n), where r = golden ratio = (1 + sqrt(5))/2. The name of the array corresponds to the power ceiling function f(x) = limit of c(x,n)/x^n as n increases without bound; f(x) generalizes the case for x = 3/2 as described under "Power Ceilings" at MathWorld. For a graph of f(x), see the Mathematica program at A083286.
The term "power ceiling sequence" extends to sequences generated by recurrences P(n) = ceiling(x*P(n-1)) + g(n), and "power ceiling functions" f(x) to the limit of P(n)/x^n in case x>1 and g(n)/x^n -> 0.
Suppose that h is a nonnegative integer and g(n) is a constant. If x is a positive integer power of the golden ratio r, then f(x), in many cases, lies in the field Q(sqrt(5)). Examples matching rows of A214986, using g(n) = 0, follow:
...
x ... P ........ f(x)
r ... A000071 .. (5 + 2*sqrt(5))/2 = 1.8944... (A010532)
r^2 . A001906 .. (5 + 3*sqrt(5))/10 = 1.7082...(A176015)
r^3 . A049652 .. (25 + 11*sqrt(5))/40 = 1.2399...
r^4 . A004187 .. (15 + 7*sqrt(5))/10 = 1.0219...
...
If k is odd, then f(r^k) = r^k((b(k) + c(k))/d(k)), where
b(k) = L(j)^2 + L(j-1)^2, where j=[(k+1)/2], L=A000032 (Lucas numbers); c(k) = (L(k)+2)*sqrt(5); d(k) = 10*F(k)*L(k), where F=A000045 (Fibonacci numbers). If k is even, then f(r^k) = r^k/(F(k)*sqrt(5)).

Examples

			Northwest corner:
1...1....1.....1......1.......1
1...2....4.....7......12......20
1...3....8.....21.....55......144
1...5....22....94.....399.....1691
1...7....48....329....2255....15456
1...19...134...1487...16492...182900
		

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio;
    s[x_, 0] := 1; s[x_, n_] := Ceiling[x*s[x, n - 1]];
    t = TableForm[Table[s[r^m, n], {m, 0, 10}, {n, 0, 10}]  ]
    u = Flatten[Table[s[r^m, n - m], {n, 0, 10}, {m, 0, n}]]

Formula

The odd-numbered rows of A214986 are even-numbered rows of A213978; the even-numbered rows of A214986 are odd-numbered rows of A214984.

A061420 a(n) = a(ceiling((n-1)*2/3)) + 1 with a(0) = 0.

Original entry on oeis.org

0, 1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 0

Views

Author

Henry Bottomley, May 02 2001

Keywords

Comments

Least k such that f^(k)(n) = 0 where f(x) = floor(2/3*x) and f^(k+1)(x) = f(f^(k)(x)). - Benoit Cloitre, May 26 2007
Number of 3:2 compressor stages in a Wallace tree multiplier starting with (n+2) partial products. - Chinmaya Dash, Aug 18 2020

Examples

			a(10) = a(ceiling(9*2/3)) + 1 = a(6) + 1 = 4 + 1 = 5.
		

Crossrefs

Cf. A029837, A061419, A083286 (the constant c).

Programs

  • Magma
    [IsZero(n) select 0 else Self(Floor(2*n/3)+1)+1: n in [0..90]]; // Bruno Berselli, Oct 31 2012
  • Maple
    a:= n-> `if`(n=0, 0, a(ceil((n-1)*2/3))+1):
    seq(a(n), n=0..100);  # Alois P. Heinz, Oct 29 2012
  • Mathematica
    (* 1st program, using the alternative definition *)
    a[0] = 0; a[n_] := a[Floor[2 n/3]] + 1;
    Table[a[n], {n, 0, 120}]
    (* 2nd program, using Cloitre's recurrence *)
    f[x_] := Floor[2 x/3]; g[0, x_] := f[x];
    g[k_, x_] := f[g[k - 1, x]];
    u[n_] := Flatten[Table[g[k, n], {k, 0, 12}]]
    v[n_] := First[Position[u[n], 0]];
    Flatten[Table[v[n], {n, 1, 120}]]
    (* 3rd program, using the constant c *)
    f[n_] := -Floor[-Log[3/2, (n + 1)/1.62227050288476731595695098289932]]
    Table[f[n], {n, 1, 120}]
    (* Clark Kimberling, Oct 23 2012 *)
  • PARI
    a(n) = if(n<0, 0, s=n; c=0; while(floor(s)>0, s=floor(2/3*s); c++); c) \\ Benoit Cloitre, May 26 2007
    

Formula

a(n) = a(n-1) + 1 if n is in A061419; a(n) = a(n-1) otherwise.
From Clark Kimberling, Oct 19 2012: (Start)
a(n) = a(floor(2*n/3)) + 1, where a(0) = 0 (alternative definition).
Washburn's solution of Problem E2604 (see References) shows that (for n>0), a(n) = -floor(-L((n+1)/c)), where L is the logarithm with base 3/2 and
c = lim_{n->infinity} (2/3)^n*s(n) where s(n) = floor(3*s(n-1)/2) + 1 and s(0)=0. The editors state that "It may be interesting to know whether c is irrational or even transcendental"; c = 1.62227050288476731595695098289932... .
Odlyzko and Wilf also discuss the defining recurrence, and they, after Washburn, give a formula for the sequence using c, as in the third Mathematica program below.
(End)

A083287 Continued fraction expansion of K(3), a constant related to the Josephus problem.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 5, 10, 19, 1, 4, 4, 4, 3, 10, 1, 42, 2, 23, 33, 1, 4, 7, 1, 12, 1, 1, 2, 9, 2, 11, 3, 4, 1, 1, 3, 2, 4, 25, 3, 1, 16, 5, 10, 1, 1, 1, 3, 1, 1, 1, 3, 2, 2, 1, 1, 1, 2, 3, 2, 1, 3, 4, 3, 1, 1, 117, 2, 1, 12, 4, 1, 4, 3, 3, 15, 1, 5, 16, 7, 2, 7, 21, 1, 3, 1, 2, 2, 2, 1, 1, 1, 1
Offset: 0

Views

Author

Ralf Stephan, Apr 23 2003

Keywords

Comments

The constant K(3)=1.62227050288476731595695... is related to the Josephus problem with q=3 and the computation of A054995.

Crossrefs

Cf. A054995, A083286 (decimal expansion).

Programs

  • Mathematica
    For[p = 1; nn = 10^4; n = 1, n <= nn, n++, p = Ceiling[3/2*p]]; p/(3/2)^nn // ContinuedFraction[#, 93] & (* Jean-François Alcover, Jul 11 2013, after Pari *)
  • PARI
    p=1; N=10^4; for(n=1, N, p=ceil(3/2*p)); c=(p/(3/2)^N)+0. \\ This gives K(3) not the sequence!

Extensions

Offset changed by Andrew Howroyd, Aug 07 2024

A083198 a(n) = A061419(n) - A002379(n).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 11, 16, 24, 36, 54, 80, 121, 181, 271, 407, 610, 915, 1372, 2058, 3088, 4631, 6947, 10420, 15630, 23446, 35169, 52753, 79129, 118693, 178039, 267059, 400589, 600883, 901324, 1351986, 2027979, 3041968
Offset: 5

Views

Author

Ralf Stephan, Jun 01 2003

Keywords

Comments

lim (a(n) * (2/3)^n) = 2/3 * A083286 - 1.

Programs

  • PARI
    p=1; for(n=2, 100, p=p+ceil(p/2); print1(p-floor((3/2)^n)", "))
Showing 1-10 of 11 results. Next