A083316 a(n) = (2*6^n - (5^n - 3^n))/2.
1, 5, 28, 167, 1024, 6335, 39208, 241967, 1487584, 9110975, 55612888, 338471567, 2054977744, 12451139615, 75314797768, 454933369967, 2744837485504, 16545254288255, 99652801745848, 599823577977167, 3608476467634864, 21698537291452895, 130429626637289128, 783769805647653167
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (14,-63,90).
Crossrefs
Cf. A083315.
Programs
-
Mathematica
A083316[n_] := 6^n - (5^n - 3^n)/2; Array[A083316, 25, 0] (* or *) LinearRecurrence[{14, -63, 90}, {1, 5, 28}, 25] (* Paolo Xausa, Jun 27 2025 *)
Formula
G.f.: (1-9x+21x^2)/((1-3x)(1-5x)(1-6x)).
E.g.f.: (2*exp(6x) - exp(5x) + exp(3x))/2.
a(n) = 14*a(n-1) - 63*a(n-2) + 90*a(n-3). - Wesley Ivan Hurt, Jun 26 2025
Comments