A083335 a(n) = 12*a(n-2) - 25*a(n-4) with initial terms 1,1,7,12.
1, 1, 7, 12, 59, 119, 533, 1128, 4921, 10561, 45727, 98532, 425699, 918359, 3965213, 8557008, 36940081, 79725121, 344150647, 742776252, 3206305739, 6920186999, 29871902693, 64472837688, 278305188841, 600669377281, 2592864698767, 5596211585172, 24156746664179
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,12,0,-25).
Programs
-
Mathematica
CoefficientList[Series[(1+x-5x^2)/(1-12x^2+25x^4), {x, 0, 30}], x] LinearRecurrence[{0,12,0,-25},{1,1,7,12},30] (* Harvey P. Dale, Mar 19 2013 *)
Formula
G.f.: (1 + x - 5*x^2) / (1 - 12*x^2 + 25*x^4).
Comments