cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A083350 Integer coefficients of a power series A(x) such that A(x)^3 = A083349(x).

Original entry on oeis.org

1, 1, 1, -1, 3, 0, -6, 17, -17, -19, 114, -215, 111, 609, -2084, 2947, 1187, -16252, 38872, -32709, -87431, 390618, -673709, 47692, 3018098, -8616766, 9761812, 13605710, -84546525, 171930010, -77194029, -610108400, 2090199824, -2940478260, -1840404119, 19501756943, -46202080484
Offset: 0

Views

Author

Paul D. Hanna, Apr 25 2003; revised May 01 2005

Keywords

Comments

Self-convolution cube equals A083349.
A083349 is the minimal permutation of the positive integers having a self-convolution cube-root consisting entirely of integers.

Examples

			A083349(x)^(1/3) = A(x) = 1 + x + x^2 - x^3 + 3x^4 + 0x^5 - 6x^6 + ...
		

Crossrefs

Programs

  • Mathematica
    n = 40; A = 1 + 3x; P = Table[0, 3(n+1)]; P[[1]] = 1; P[[3]] = 2; For[j = 2, j <= n, j++, For[k = 2, k <= 3(n+1), k++, If[P[[k]] == 0, t = Coefficient[(A + k x^j + x^2 O[x]^j)^(1/3), x, j]; If[Denominator[t] == 1, P[[k]] = j+1; A = A + k x^j; Break[]]]]];
    CoefficientList[A^(1/3) + O[x]^n, x] (* Jean-François Alcover, Jul 26 2018, from PARI *)
  • PARI
    {a(n)=local(A=1+3*x,P=vector(3*(n+1)));P[1]=1;P[3]=2; for(j=2,n, for(k=2,3*(n+1),if(P[k]==0, t=polcoeff((A+k*x^j+x^2*O(x^j))^(1/3),j); if(denominator(t)==1,P[k]=j+1;A=A+k*x^j;break)))); return(polcoeff((A+x*O(x^n))^(1/3),n))}

A106213 Positions n where A083349(n) = 1 (mod 3).

Original entry on oeis.org

0, 3, 6, 24, 33, 42, 45, 54, 60, 66, 69, 78, 87, 93, 102, 108, 111, 120, 129, 144, 153, 162, 165, 174, 183, 186, 195, 204, 213, 216, 225, 228, 231, 237, 240, 258, 261, 267, 279, 285, 300, 306, 312, 321, 333, 336, 351, 363, 366, 384, 390, 408, 414, 417, 420, 429
Offset: 0

Views

Author

Paul D. Hanna, May 01 2005

Keywords

Comments

A083349 is the minimal permutation of the positive integers having a self-convolution cube-root.

Crossrefs

Programs

  • PARI
    
    				

Formula

a(n) = 0 (mod 3) for n>=0.

A106214 Positions n where A083349(n) = 2 (mod 3).

Original entry on oeis.org

9, 21, 27, 48, 51, 72, 75, 81, 96, 105, 114, 117, 123, 126, 132, 135, 147, 156, 159, 177, 180, 189, 198, 201, 207, 222, 234, 252, 255, 264, 273, 288, 291, 294, 309, 315, 324, 339, 357, 360, 378, 387, 393, 399, 402, 432, 438, 444, 450, 456
Offset: 0

Views

Author

Paul D. Hanna, May 01 2005

Keywords

Comments

A083349 is the minimal permutation of the positive integers having a self-convolution cube-root.

Crossrefs

Formula

a(n) = 0 (mod 3) for n>=0.

A110879 Let a_0 = 1 and for n > 0, let a_n be the smallest positive integer not already in the sequence such that (a_0 + a_1 x + a-2x^2 + ....)^(1/3) has integer coefficients. (Hanna's A083349). Let f(n) = n th term in the present sequence. Then a_0 + a_1 x + a_2 x^2 + ... = (1-x)^f(1) (1-x^2)^f(2) (1-x^3)^f(3) ....

Original entry on oeis.org

-1, -2, -3, 5, 1, -3, -3, 7, 6, -7, -23, 15, 12, 28, -48, -25, -10, 165, 4, -274, -408, 927, 932, -1179, -3745, 2906, 7620, -1471, -21283, 1593, 40509, 18877, -93870, -53839, 153551, 204285, -293171, -462306, 307359, 1227141, -282147, -2368041, -1025023, 5041701, 4100247, -7457707, -15096708
Offset: 1

Views

Author

Barry Brent (barrybrent(AT)member.ams.org), Sep 19 2005

Keywords

Comments

The preprint reference asks for a generating function for Hanna's sequence. Terms of present sequence are the exponents in an infinite product for Hanna's sequence. They were obtained from terms of Hanna's sequence with the cited theorem in Apostol and Mobius inversion.

References

  • Apostol, T., Introduction to Analytic Number Theory, Springer-Verlag 1976, Theorem 14.8, p. 323.

Crossrefs

Cf. A083349.

A083951 Least increasing integer coefficients such that A(x)^(1/3) has only integer coefficients.

Original entry on oeis.org

1, 3, 6, 7, 9, 12, 13, 15, 18, 21, 24, 27, 28, 30, 33, 34, 36, 39, 41, 42, 45, 47, 48, 51, 52, 54, 57, 60, 63, 66, 69, 72, 75, 77, 78, 81, 83, 84, 87, 88, 90, 93, 94, 96, 99, 100, 102, 105, 108, 111, 114, 116, 117, 120, 121, 123, 126, 127, 129, 132, 133, 135, 138, 139
Offset: 0

Views

Author

Paul D. Hanna, May 09 2003

Keywords

Comments

a(k) == 1 (mod 3) at k=0,3,6,12,15,24,39,42,45,54,57,60,63,66,... a(k) == 2 (mod 3) at k=18,21,33,36,51,...

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Block[{k = a[n - 1] + 1, s = Sum[ a[i]*x^i, {i, 0, n - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^n)^(1/3), {x, 0, n}], x]]] != True, k++ ]; k]; Array[ a, 70] (* Robert G. Wilson v, Sep 19 2008 *)

Extensions

Three non-ascending values in the range 77 to 84 replaced with those from the b-file. - R. J. Mathar, Jan 14 2009
Showing 1-5 of 5 results.