A083370 Primes satisfying f(2p)=p when f(1)=5 (see comment).
23, 31, 47, 53, 61, 73, 83, 89, 113, 131, 139, 151, 157, 167, 173, 181, 199, 211, 233, 241, 251, 257, 263, 271, 283, 293, 317, 331, 337, 353, 359, 367, 373, 383, 389, 401, 409, 421, 433, 443, 449, 467, 479, 491
Offset: 1
Keywords
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..2000
Crossrefs
Cf. A076973.
Programs
-
Maple
A006530 := proc(n) if n = 1 then RETURN(1) ; else RETURN(op(1,op(-1,op(2,ifactors(n))))) ; fi ; end: f := proc(n) option remember ; if n = 1 then RETURN(5) ; else A006530(add(f(i),i=1..n-1)) ; fi ; end: isA083370 := proc(p) if isprime(p) then if p = f(2*p) then true ; else false ; fi ; else false ; fi ; end: n := 1 : i := 1 : while n <= 1000 do p := ithprime(i) ; if isA083370(p) then printf("%d %d ",n,p) ; n := n+ 1 ; fi ; i := i+1 ; end: # R. J. Mathar, Feb 08 2007
-
Mathematica
f[n_] := f[n] = If[n==1, 5, FactorInteger[Total[f /@ Range[n-1]]][[-1, 1]]]; Reap[For[p=2, p<500, p = NextPrime[p], If[f[2p] == p, Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 31 2019 *)
Comments