cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083370 Primes satisfying f(2p)=p when f(1)=5 (see comment).

Original entry on oeis.org

23, 31, 47, 53, 61, 73, 83, 89, 113, 131, 139, 151, 157, 167, 173, 181, 199, 211, 233, 241, 251, 257, 263, 271, 283, 293, 317, 331, 337, 353, 359, 367, 373, 383, 389, 401, 409, 421, 433, 443, 449, 467, 479, 491
Offset: 1

Views

Author

Benoit Cloitre, Jun 04 2003

Keywords

Comments

Conjecture: start from any initial value f(1) >= 2 and define f(n) to be the largest prime factor of f(1)+f(2)+...+f(n-1); then f(n) = n/2 + O(log(n)) and there are infinitely many primes p such that f(2p)=p.
Coincides with A124582 in the first 154 terms: a(154) = A124582(154) = 1723, but a(155,156,...) = 1777, 1783, 1801, 2017, 3251, ..., whereas A124582(155,156,...) = 1733, 1741, 1747, ... - R. J. Mathar, Feb 08 2007

Crossrefs

Cf. A076973.

Programs

  • Maple
    A006530 := proc(n) if n = 1 then RETURN(1) ; else RETURN(op(1,op(-1,op(2,ifactors(n))))) ; fi ; end: f := proc(n) option remember ; if n = 1 then RETURN(5) ; else A006530(add(f(i),i=1..n-1)) ; fi ; end: isA083370 := proc(p) if isprime(p) then if p = f(2*p) then true ; else false ; fi ; else false ; fi ; end: n := 1 : i := 1 : while n <= 1000 do p := ithprime(i) ; if isA083370(p) then printf("%d %d ",n,p) ; n := n+ 1 ; fi ; i := i+1 ; end: # R. J. Mathar, Feb 08 2007
  • Mathematica
    f[n_] := f[n] = If[n==1, 5, FactorInteger[Total[f /@ Range[n-1]]][[-1, 1]]];
    Reap[For[p=2, p<500, p = NextPrime[p], If[f[2p] == p, Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 31 2019 *)