A083378 a(n) is the largest integer whose cube has n digits and first digit 1, except that a(2)=2.
1, 2, 5, 12, 27, 58, 125, 271, 584, 1259, 2714, 5848, 12599, 27144, 58480, 125992, 271441, 584803, 1259921, 2714417, 5848035, 12599210, 27144176, 58480354, 125992104, 271441761, 584803547, 1259921049, 2714417616, 5848035476
Offset: 1
Links
- W. Hürlimann, Integer powers and Benford's law, International Journal of Pure and Applied Mathematics, vol. 11, no. 1, pp. 39-46, 2004.
- Index entries for sequences related to Benford's law
Programs
-
Mathematica
Floor[Power[(10^Range[30])/5, (3)^-1]] (* Harvey P. Dale, Jul 15 2011 *)
Formula
a(n) = floor((10^n/5)^(1/3)).
Extensions
Edited by Don Reble, Nov 05 2005
Comments