cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083413 a(n) = Sum_{d|n} d*2^(d-1) for n > 0.

Original entry on oeis.org

0, 1, 5, 13, 37, 81, 209, 449, 1061, 2317, 5205, 11265, 24817, 53249, 115141, 245853, 525349, 1114113, 2361809, 4980737, 10490997, 22020557, 46148613, 96468993, 201352433, 419430481, 872468485, 1811941645, 3758211557, 7784628225, 16106378529, 33285996545
Offset: 0

Views

Author

N. J. A. Sloane, Jun 09 2003

Keywords

Crossrefs

Cf. A077272.
Cf. A054599.

Programs

  • Maple
    oo := 101: t1 := add(x^m/(m*(1-2*x^m)),m=1..oo): series(%,x,oo): t2 := seriestolist(%): A083413 := n -> t2[n+1]*n;
  • Mathematica
    CoefficientList[Series[Sum[x^k/(1-2*x^k)^2,{k,1,30}],{x,0,30}],x] (* Vaclav Kotesovec, Sep 09 2014 *)
  • PARI
    a(n)=if(n<1,0,sumdiv(n,d,d*2^(d-1)))

Formula

Sum_{n > 0} a(n)*x^n/n = Sum_{m > 0} x^m/(m*(1-2*x^m)).
G.f.: Sum_{m > 0} x^m/(1-2*x^m)^2.
a(n) ~ n*2^(n-2). - Vaclav Kotesovec, Sep 09 2014
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(2^(k-1))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 20 2018