A083512
Multiples of 11 with digit sum 11, with no zero digits in odd places.
Original entry on oeis.org
209, 308, 407, 506, 605, 704, 803, 902, 10109, 10208, 10307, 10406, 10505, 10604, 10703, 10802, 10901, 20108, 20207, 20306, 20405, 20504, 20603, 20702, 20801, 30107, 30206, 30305, 30404, 30503, 30602, 30701, 40106, 40205, 40304, 40403
Offset: 1
Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 05 2003
A346221
Palindromes that are multiples of 11 and whose digit sum is also a multiple of 11.
Original entry on oeis.org
2992, 3883, 4774, 5665, 6556, 7447, 8338, 9229, 10901, 20702, 30503, 40304, 50105, 70807, 80608, 90409, 119911, 128821, 137731, 146641, 155551, 164461, 173371, 182281, 191191, 209902, 218812, 227722, 236632, 245542, 254452, 263362, 272272, 281182, 290092, 308803
Offset: 1
11 is a palindrome that is a multiple of 11, but its digit sum is not divisible by 11. Thus, 11 is not in this sequence.
-
Select[Range[400000], PalindromeQ[#] && IntegerQ[#/11] && IntegerQ[Total[IntegerDigits[#]]/11] &]
-
isok(m) = my(d=digits(m)); (Vecrev(d) == d) && !(m % 11) && !(vecsum(d) % 11); \\ Michel Marcus, Aug 06 2021
-
from itertools import product
def sd(n): return sum(map(int, str(n)))
def pals(d, base=10): # all positive d-digit palindromes
digits = "".join(str(i) for i in range(base))
for p in product(digits, repeat=d//2):
if d > 1 and p[0] == "0": continue
left = "".join(p); right = left[::-1]
for mid in [[""], digits][d%2]:
t = int(left + mid + right)
if t > 0: yield t
def ok(pal): return pal%11 == 0 and sd(pal)%11 == 0
print([p for d in range(1, 7) for p in pals(d) if ok(p)]) # Michael S. Branicky, Jul 11 2021
Showing 1-2 of 2 results.
Comments