cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A085068 Number of steps >= 1 for iteration of map x -> (4/3)*ceiling(x) to reach an integer when started at n, or -1 if no such integer is ever reached.

Original entry on oeis.org

1, 3, 2, 1, 2, 9, 1, 8, 3, 1, 7, 2, 1, 2, 6, 1, 3, 4, 1, 5, 2, 1, 2, 3, 1, 6, 4, 1, 3, 2, 1, 2, 4, 1, 5, 3, 1, 4, 2, 1, 2, 4, 1, 3, 8, 1, 4, 2, 1, 2, 3, 1, 4, 7, 1, 3, 2, 1, 2, 7, 1, 4, 3, 1, 9, 2, 1, 2, 6, 1, 3, 6, 1, 5, 2, 1, 2, 3, 1, 6, 5, 1, 3, 2, 1, 2, 8, 1, 5, 3, 1, 5, 2, 1, 2, 5, 1, 3, 4, 1, 6
Offset: 0

Views

Author

N. J. A. Sloane, Aug 11 2003

Keywords

Comments

It is conjectured that an integer is always reached.

Crossrefs

Programs

  • Maple
    f := x->(4/3)*ceil(x); g := proc(n) local t1,c; global f; t1 := f(n); c := 1; while not type(t1, 'integer') do c := c+1; t1 := f(t1); od; RETURN([c,t1]); end;
    # second Maple program:
    a:= proc(n) local i; n; for i do 4/3*ceil(%);
          if %::integer then return i fi od
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 01 2021
  • Mathematica
    f[n_] := Block[{c = 1, k = 4 n/3}, While[ ! IntegerQ@k, c++; k = 4 Ceiling@k/3]; c]; Table[f@n, {n, 0, 104}] (* Robert G. Wilson v *)
  • Python
    from fractions import Fraction
    def A085068(n):
        c, x, m = 1, Fraction(4*n,3), Fraction(4,3)
        while x.denominator > 1:
            x = m*x._ceil_()
            c += 1
        return c # Chai Wah Wu, Mar 01 2021
Showing 1-1 of 1 results.