A083520 Primes p such that p-1 is a product of two or more consecutive integers. Or (p-1) is a permutation of m items chosen from n, for some m and n. p-1 = k*(k+1)(k+2)...(k+r) for some k and r, r>0.
3, 7, 13, 31, 43, 61, 73, 157, 211, 241, 307, 337, 421, 463, 601, 757, 991, 1123, 1321, 1483, 1723, 2521, 2551, 2731, 2971, 3307, 3361, 3541, 3907, 4423, 4831, 5113, 5701, 6007, 6163, 6481, 6841, 8011, 8191, 9241, 9901, 10303, 10627, 11131, 12211, 12433
Offset: 1
Keywords
Examples
61 is in this sequence as 60 = 3*4*5. 73 is in this sequence as 72 = 8*9.
Links
- R. J. Mathar, Table of n, a(n) for n = 1..131
Programs
-
Maple
isA083520 := proc(p) local k,r,i,po; for k from 1 to floor(sqrt(p)) do for r from 1 do po := product(k+i,i=0..r) ; if po = p-1 then return true; elif po > p-1 then break; end if; end do: end do: false ; end proc: n := 1 : for c from 1 do p := ithprime(c) ; if isA083520(p) then printf("%d %d\n",n,p) ; n := n+1 ; end if; end do: # R. J. Mathar, Aug 23 2014
Extensions
More terms from David Wasserman, Nov 19 2004
Comments