A083523 Smallest Fibonacci number divisible by 2^n.
1, 2, 8, 8, 144, 46368, 4807526976, 51680708854858323072, 5972304273877744135569338397692020533504, 79757008057644623350300078764807923712509139103039448418553259155159833079730688
Offset: 0
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 0..12
- Ron Knott, The first 300 Fibonacci numbers, completely factorised.
- Tamás Lengyel, The order of the Fibonacci and Lucas numbers, The Fibonacci Quarterly, Vol. 33, No. 3 (1995), pp. 234-239.
Programs
-
Mathematica
Do[k = 1; While[ !IntegerQ[ Fibonacci[k]/2^n], k++ ]; Print[ Fibonacci[k]], {n, 0, 10}] With[{fibs=Fibonacci[Range[1000]]},Table[SelectFirst[fibs, Divisible[#,2^n]&],{n,0,10}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 02 2021 *) Join[{1, 2, 8}, Table[Fibonacci[3*2^(n - 2)], {n, 3, 9}]] (* Amiram Eldar, Jan 29 2022 *)
Formula
From Amiram Eldar, Jan 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 19/8 - 1/phi, where phi is the golden ratio (A001622). (End)
Extensions
Edited and extended by Robert G. Wilson v, May 06 2003
Comments