A083549 Quotient if least common multiple (lcm) of cototient values of consecutive integers is divided by the greatest common divisor (gcd) of the same pair of consecutive numbers.
0, 1, 2, 2, 4, 4, 4, 12, 2, 6, 8, 8, 8, 56, 56, 8, 12, 12, 12, 12, 12, 12, 16, 80, 70, 126, 144, 16, 22, 22, 16, 208, 234, 198, 264, 24, 20, 12, 40, 24, 30, 30, 24, 56, 56, 24, 32, 224, 210, 570, 532, 28, 36, 60, 480, 672, 70, 30, 44, 44, 32, 864, 864, 544, 782, 46, 36, 900
Offset: 1
Keywords
Examples
n=33: cototient(33) = 33-20 = 13, cototient(34) = 34-16 = 18; lcm(13,18) = 234, gcd(13,18) = 1, so a(34) = 234.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[x_] := x-EulerPhi[x]; Table[LCM[f[w+1], f[w]]/GCD[f[w+1], f[w]], {w, 69}] (* Second program: *) Map[Apply[LCM, #]/Apply[GCD, #] &@ Map[# - EulerPhi@ # &, #] &, Partition[Range[69], 2, 1]] (* Michael De Vlieger, Mar 17 2018 *)