A083555 Quotient of LCM of prime(n+1)-1 and prime(n)-1 and GCD of the same two numbers.
2, 2, 6, 15, 30, 12, 72, 99, 154, 210, 30, 90, 420, 483, 598, 754, 870, 110, 1155, 1260, 156, 1599, 1804, 132, 600, 2550, 2703, 2862, 756, 72, 4095, 4420, 4692, 5106, 5550, 650, 702, 6723, 7138, 7654, 8010, 342, 9120, 2352, 9702, 1155, 1295, 12543, 12882
Offset: 1
Keywords
Examples
n=25: prime(25)=97, prime(26)=101; a(25) = lcm(96,100)/gcd(96,100) = 2400/4 = 600.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
P:= seq(ithprime(i),i=1..100): seq(ilcm(P[i+1]-1,P[i]-1)/igcd(P[i+1]-1,P[i]-1),i=1..99); # Robert Israel, Jun 11 2017
-
Mathematica
f[x_] := Prime[x]-1 Table[LCM[f[w+1], f[w]]/GCD[f[w+1], f[w]], {w, 1, 128}] (* Second program: *) Table[Apply[LCM[#1, #2]/GCD[#1, #2] &, Prime[n + {1, 0}] - 1], {n, 49}] (* Michael De Vlieger, Jun 11 2017 *)
-
PARI
first(n)=my(v=vector(n),p=2,k,g); forprime(q=3,, g=gcd(p-1,q-1); v[k++]=(p-1)*(q-1)/g^2; p=q; if(k==n, break)); v \\ Charles R Greathouse IV, Jun 11 2017