cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083555 Quotient of LCM of prime(n+1)-1 and prime(n)-1 and GCD of the same two numbers.

Original entry on oeis.org

2, 2, 6, 15, 30, 12, 72, 99, 154, 210, 30, 90, 420, 483, 598, 754, 870, 110, 1155, 1260, 156, 1599, 1804, 132, 600, 2550, 2703, 2862, 756, 72, 4095, 4420, 4692, 5106, 5550, 650, 702, 6723, 7138, 7654, 8010, 342, 9120, 2352, 9702, 1155, 1295, 12543, 12882
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Examples

			n=25: prime(25)=97, prime(26)=101; a(25) = lcm(96,100)/gcd(96,100) = 2400/4 = 600.
		

Crossrefs

Programs

  • Maple
    P:= seq(ithprime(i),i=1..100):
    seq(ilcm(P[i+1]-1,P[i]-1)/igcd(P[i+1]-1,P[i]-1),i=1..99); # Robert Israel, Jun 11 2017
  • Mathematica
    f[x_] := Prime[x]-1 Table[LCM[f[w+1], f[w]]/GCD[f[w+1], f[w]], {w, 1, 128}]
    (* Second program: *)
    Table[Apply[LCM[#1, #2]/GCD[#1, #2] &, Prime[n + {1, 0}] - 1], {n, 49}] (* Michael De Vlieger, Jun 11 2017 *)
  • PARI
    first(n)=my(v=vector(n),p=2,k,g); forprime(q=3,, g=gcd(p-1,q-1); v[k++]=(p-1)*(q-1)/g^2; p=q; if(k==n, break)); v \\ Charles R Greathouse IV, Jun 11 2017

Formula

a(n) = lcm(A006093(n+1), A006093(n))/gcd(A006093(n+1), A006093(n));
a(n) = A083554(n)/A058263(n).
a(n) = A051537(A006093(n+1), A006093(n)). - Robert Israel, Jun 11 2017