cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A083553 Product of prime(n+1)-1 and prime(n)-1.

Original entry on oeis.org

2, 8, 24, 60, 120, 192, 288, 396, 616, 840, 1080, 1440, 1680, 1932, 2392, 3016, 3480, 3960, 4620, 5040, 5616, 6396, 7216, 8448, 9600, 10200, 10812, 11448, 12096, 14112, 16380, 17680, 18768, 20424, 22200, 23400, 25272, 26892, 28552, 30616, 32040
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Comments

The conductor of x*prime(n) + y*prime(n+1); that is, for all k >= a(n), there exist nonnegative integers x and y such that k = x*prime(n) + y*prime(n+1). - T. D. Noe, Sep 22 2004

Examples

			n=25: a(25) = (97-1)*(101-1) = 9600.
		

References

  • David Bressoud and Stan Wagon, A Course in Computational Number Theory, Key College Pub., 2000, p. 46.

Crossrefs

Cf. A000040, A006093, A058263, A083538-A083555, A099407 (terms halved), A172042 [= A000010(a(n))], A256617.
One more than A037165.
Column 3 of A379010.

Programs

  • Mathematica
    f[x_] := Prime[x]-1; Table[f[w+1]*f[w], {w, 1, 128}]
  • PARI
    A083553(n) = ((prime(1+n)-1)*(prime(n)-1)); \\ Antti Karttunen, Dec 14 2024

Formula

a(n) = A006093(n+1)*A006093(n) = (prime(n+1)-1)*(prime(n)-1).
a(n) = A037165(n) + 1.
a(n) = 2*A099407(n). - Antti Karttunen, Dec 14 2024

A083550 Product of 2 consecutive prime differences of two successive terms of A001223.

Original entry on oeis.org

2, 4, 8, 8, 8, 8, 8, 24, 12, 12, 24, 8, 8, 24, 36, 12, 12, 24, 8, 12, 24, 24, 48, 32, 8, 8, 8, 8, 56, 56, 24, 12, 20, 20, 12, 36, 24, 24, 36, 12, 20, 20, 8, 8, 24, 144, 48, 8, 8, 24, 12, 20, 60, 36, 36, 12, 12, 24, 8, 20, 140, 56, 8, 8, 56, 84, 60, 20, 8, 24, 48, 48, 36, 24, 24, 48
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Crossrefs

Programs

  • Mathematica
    f[x_] := Prime[x+1]-Prime[x]
    Table[f[w+1]*f[w], {w, 1, 128}]

Formula

a(n) = A001223(n)*A001223(n+1) = (prime(n+1)-prime(n))*(prime(n+2)-prime(n+1)).

A083551 Least common multiple of 2 consecutive prime differences, of two successive terms of A001223.

Original entry on oeis.org

2, 2, 4, 4, 4, 4, 4, 12, 6, 6, 12, 4, 4, 12, 6, 6, 6, 12, 4, 6, 12, 12, 24, 8, 4, 4, 4, 4, 28, 28, 12, 6, 10, 10, 6, 6, 12, 12, 6, 6, 10, 10, 4, 4, 12, 12, 12, 4, 4, 12, 6, 10, 30, 6, 6, 6, 6, 12, 4, 10, 70, 28, 4, 4, 28, 42, 30, 10, 4, 12, 24, 24, 6, 12, 12, 24, 8, 8, 40, 10, 10, 10, 6, 12
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Crossrefs

Programs

  • Mathematica
    f[x_] := Prime[x+1]-Prime[x];  Table[LCM[f[w+1], f[w]], {w, 1, 128}]
    Table[LCM[(Prime[n + 1] - Prime[n]), Prime[n + 2] - Prime[n + 1]], {n, 100}] (* Vincenzo Librandi, Mar 15 2018 *)
    LCM@@#&/@Partition[Differences[Prime[Range[90]]],2,1] (* Harvey P. Dale, Oct 11 2020 *)

Formula

a(n) = lcm(A001223(n), A001223(n+1)).

A083554 Least common multiple of prime(n+1)-1 and prime(n)-1.

Original entry on oeis.org

2, 4, 12, 30, 60, 48, 144, 198, 308, 420, 180, 360, 840, 966, 1196, 1508, 1740, 660, 2310, 2520, 936, 3198, 3608, 1056, 2400, 5100, 5406, 5724, 3024, 1008, 8190, 8840, 9384, 10212, 11100, 3900, 4212, 13446, 14276, 15308, 16020, 3420, 18240, 9408
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Examples

			n=25: a(25) = lcm(97-1, 101-1) = lcm(96,100) = 2400.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := Prime[x]-1; Table[LCM[f[w+1], f[w]], {w, 1, 128}]
  • PARI
    a(n) = lcm(prime(n+1)-1, prime(n)-1); \\ Michel Marcus, Mar 15 2018

Formula

a(n) = lcm(A006093(n+1), A006093(n)) = lcm(prime(n+1)-1, prime(n)-1).

A083548 Least common multiple of cototient values of consecutive integers.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 4, 12, 6, 6, 8, 8, 8, 56, 56, 8, 12, 12, 12, 36, 36, 12, 16, 80, 70, 126, 144, 16, 22, 22, 16, 208, 234, 198, 264, 24, 20, 60, 120, 24, 30, 30, 24, 168, 168, 24, 32, 224, 210, 570, 532, 28, 36, 180, 480, 672, 210, 30, 44, 44, 32, 864, 864, 544, 782, 46, 36
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Crossrefs

Programs

  • Mathematica
    f[x_] := x-EulerPhi[x] Table[LCM[f[w+1], f[w]], {w, 1, b}]
    LCM@@#&/@Partition[Table[n-EulerPhi[n],{n,70}],2,1] (* Harvey P. Dale, Feb 01 2015 *)
  • PARI
    a(n)=lcm(n-eulerphi(n),n+1-eulerphi(n+1)) \\ Charles R Greathouse IV, Nov 16 2012

Formula

a(n) = lcm(A051953(n), A051953(n+1)).

A083552 Quotient when LCM of 2 consecutive prime differences is divided by GCD of the same two differences.

Original entry on oeis.org

2, 1, 2, 2, 2, 2, 2, 6, 3, 3, 6, 2, 2, 6, 1, 3, 3, 6, 2, 3, 6, 6, 12, 2, 2, 2, 2, 2, 14, 14, 6, 3, 5, 5, 3, 1, 6, 6, 1, 3, 5, 5, 2, 2, 6, 1, 3, 2, 2, 6, 3, 5, 15, 1, 1, 3, 3, 6, 2, 5, 35, 14, 2, 2, 14, 21, 15, 5, 2, 6, 12, 12, 1, 6, 6, 12, 2, 2, 20, 5, 5, 5, 3, 6, 6, 12, 2, 2, 2, 3, 6, 2, 2, 2, 6, 2, 6, 9
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Comments

Conjecture: Every positive integer appears infinitely many times in this sequence. Example: a(834) = a(909) = ... = a(9901) = ... = 4. - Jerzy R Borysowicz, Dec 22 2018
All terms of this sequence are integers because gcd(r,s) divides lcm(r,s) for any r and s. - Jerzy R Borysowicz, Jan 05 2019

Crossrefs

Programs

  • Mathematica
    f[x_] := Prime[x+1]-Prime[x]; Table[LCM[f[w+1], f[w]]/GCD[f[w+1], f[w]], {w, 1, 128}]
  • PARI
    a(n) = my(da=prime(n+2)-prime(n+1), db=prime(n+1)-prime(n)); lcm(da, db)/gcd(da, db) \\ Felix Fröhlich, Jan 05 2019

Formula

a(n) = lcm(A001223(n), A001223(n+1))/gcd(A001223(n), A001223(n+1));
a(n) = A083551(n)/A057467(n).

A082849 Product of cototient values of consecutive integers.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 4, 12, 18, 6, 8, 8, 8, 56, 56, 8, 12, 12, 12, 108, 108, 12, 16, 80, 70, 126, 144, 16, 22, 22, 16, 208, 234, 198, 264, 24, 20, 300, 360, 24, 30, 30, 24, 504, 504, 24, 32, 224, 210, 570, 532, 28, 36, 540, 480, 672, 630, 30, 44, 44, 32, 864, 864, 544, 782
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Crossrefs

Programs

  • Mathematica
    f[x_] := x-EulerPhi[x] tpr=Table[f[w+1]*f[w], {w, 1, 128}]
    Times@@@Partition[Table[n-EulerPhi[n],{n,70}],2,1] (* Harvey P. Dale, Nov 17 2020 *)
  • PARI
    p=2;forprime(q=3,97,print1((p-eulerphi(p))*(q-eulerphi(q))", ");p=q) \\ Charles R Greathouse IV, Nov 16 2012

Formula

a(n) = A051953(n) * A051953(n+1).
Sum_{k=1..n} a(k) ~ c * n^3 + O(n^2 * log(n)^2), where c = (1/3) * (1 + Product_{p prime} (1 - 2/p^2)) - 4/Pi^2 = 0.03559329841.... (Panaitopol, 1999). - Amiram Eldar, Mar 09 2021

A083549 Quotient if least common multiple (lcm) of cototient values of consecutive integers is divided by the greatest common divisor (gcd) of the same pair of consecutive numbers.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 4, 12, 2, 6, 8, 8, 8, 56, 56, 8, 12, 12, 12, 12, 12, 12, 16, 80, 70, 126, 144, 16, 22, 22, 16, 208, 234, 198, 264, 24, 20, 12, 40, 24, 30, 30, 24, 56, 56, 24, 32, 224, 210, 570, 532, 28, 36, 60, 480, 672, 70, 30, 44, 44, 32, 864, 864, 544, 782, 46, 36, 900
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Examples

			n=33: cototient(33) = 33-20 = 13, cototient(34) = 34-16 = 18;
lcm(13,18) = 234, gcd(13,18) = 1, so a(34) = 234.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := x-EulerPhi[x]; Table[LCM[f[w+1], f[w]]/GCD[f[w+1], f[w]], {w, 69}]
    (* Second program: *)
    Map[Apply[LCM, #]/Apply[GCD, #] &@ Map[# - EulerPhi@ # &, #] &, Partition[Range[69], 2, 1]] (* Michael De Vlieger, Mar 17 2018 *)

Formula

a(n) = lcm(A051953(n), A051952(n+1))/gcd(A051953(n), A051952(n+1)) = lcm(cototient(n+1), cototient(n))/A049586(n).
Showing 1-8 of 8 results.