A083660 Smallest nonnegative integer m such that the concatenation of the integers from n to 1 interspersed with those of m, in base 10, is prime.
1, 5, 14, 5, 5, 9, 1, 1, 29, 23, 28, 13, 46, 22, 18, 116, 35, 18, 155, 7, 81, 1, 139, 52, 262, 215, 56, 29, 11, 6, 256, 119, 381, 592, 67, 189, 116, 46, 5, 275, 139, 27, 101, 118, 96, 167, 196, 393, 275, 91, 146, 415, 193, 127, 85, 73, 6, 4, 50, 118, 1046, 362, 5, 431, 248, 180, 82, 230, 125
Offset: 2
Examples
a(4) = 14 because the concatenation of the digits from 4 to 1 (that is, 4321) with 14 stuck between each of them is 4143142141, and that is a prime number. Similar concatenations with numbers less than 14 used in 14's place all give composite numbers.
Links
- C. Rivera, Puzzle 8 (www.primepuzzles.net).
Crossrefs
Cf. A032702.
Programs
-
Mathematica
(*In the absence of a base argument, the function leastGenPrimeByListingFNI assumes the base is 10. Minimum and maximum allowed base values are 2 and 36.*) leastGenPrimeByListingFNI[n_, b_: 10] := Module[{m = 0, p, flag = False}, While[Not[flag], m++; p = FromDigits[Flatten[{Table[{IntegerDigits[i, b], IntegerDigits[m, b]}, {i, n, 2, -1}], {1}}], b]; flag = PrimeQ[p]]; Return[m]]; Table[leastGenPrimeByListingFNI[n], {n, 2, 10}]
Extensions
Terms verified by Alonso del Arte, Dec 09 2009
Comments