A083671 Array read by rows in which each row describes in words the composition of the previous row.
1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 2, 2, 1, 1, 2, 1, 3, 3, 1, 2, 2, 1, 3, 2, 1, 2, 2, 2, 3, 1, 1, 4, 2, 1, 3, 3, 1, 1, 2, 1, 3, 1, 4, 4, 1, 1, 2, 2, 3, 1, 4, 3, 1, 2, 2, 1, 3, 2, 4, 2, 1, 3, 2, 2, 3, 1, 4, 2, 1, 3, 2, 2, 3, 1, 4, 2, 1, 3, 2, 2, 3, 1, 4, 2, 1, 3, 2, 2, 3, 1, 4, 2, 1, 3, 2, 2, 3, 1, 4, 2, 1, 3, 2, 2, 3, 1, 4, 2, 1, 3, 2, 2, 3, 1, 4
Offset: 1
Examples
Array begins: 1 1 1 2 1 1 1 1 2 3 1 1 2 2 1 1 2 1 3 3 1 2 2 1 3 2 1 2 2 2 3 1 1 4 2 1 3 3 1 1 2 1 3 1 4 4 1 1 2 2 3 1 4 3 1 2 2 1 3 2 4 2 1 3 2 2 3 1 4 Explanation: look at 3 1 1 2. What do you see? Two 1's, one 2 and one 3, so the next row is 2 1 1 2 1 3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Onno M. Cain and Sela T. Enin, Inventory Loops (i.e. Counting Sequences) have Pre-period 2 max S_1 + 60, arXiv:2004.00209 [math.NT], 2020.
Programs
-
Mathematica
NestList[Function[test, Flatten[{Count[test, # ], # } & /@ Union[test]]], {1}, 13] RunLengthEncode[x_List ] := (Through[ { Length, First}[ #1 ] ] &) /@ Split[ Sort[ x ]]; LookAndSay[ n_, d_:1 ] := NestList[ Flatten[ RunLengthEncode[ # ] ] &, {d}, n - 1 ]; F[n_] := LookAndSay[ n, 1 ][[ n ]]; Flatten[ Table[ F[n], {n, 18}]] (* Robert G. Wilson v, Jan 22 2004 *)
Formula
G.f.: x*(x^67 -x^65 -x^63 +x^61 -x^59 +x^57 -x^55 +x^53 -x^49 -x^45 -x^44 -x^42 +3*x^41 -x^40 +2*x^38 -x^37 -x^36 +x^35 -x^34 -2*x^33 +2*x^32 -x^30 -x^28 +x^27 +2*x^26 -x^25 -x^24 -x^22 +x^20 -2*x^19 -2*x^18 +2*x^17 -x^13 -x^12 +x^11 -2*x^9 -x^8 -x^7 -x^6 -x^5 -x^4 -2*x^3 -x^2 -x -1) / (x^8-1). - Alois P. Heinz, Jul 25 2013
Extensions
More terms from Wouter Meeussen and Robert G. Wilson v, Jan 22 2004
Comments