A083735 Pseudoprimes to bases 3 and 7.
703, 1105, 2465, 10585, 18721, 19345, 29341, 38503, 46657, 50881, 75361, 76627, 88831, 104653, 115921, 146611, 162401, 188191, 213265, 226801, 252601, 278545, 286903, 294409, 314821, 334153, 340561, 359341, 385003, 385201, 399001, 410041
Offset: 1
Keywords
Examples
a(1)=703 since it is the first number such that 3^(k-1) = 1 (mod k) and 7^(k-1) = 1 (mod k).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..16479 (terms 1..151 from R. J. Mathar)
- F. Richman, Primality testing with Fermat's little theorem
- Index entries for sequences related to pseudoprimes
Crossrefs
Programs
-
Mathematica
Select[Range[420000],!PrimeQ[#]&&PowerMod[3,#-1,#]==1&&PowerMod[7,#-1,#] == 1&] (* Harvey P. Dale, Mar 08 2014 *)
-
PARI
is(n)=!isprime(n)&&Mod(7,n)^(n-1)==1&&Mod(3,n)^(n-1)==1 \\ Charles R Greathouse IV, Apr 12 2012
Formula
a(n) = n-th positive integer k(>1) such that 3^(k-1) = 1 (mod k) and 7^(k-1) = 1 (mod k).