cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083735 Pseudoprimes to bases 3 and 7.

Original entry on oeis.org

703, 1105, 2465, 10585, 18721, 19345, 29341, 38503, 46657, 50881, 75361, 76627, 88831, 104653, 115921, 146611, 162401, 188191, 213265, 226801, 252601, 278545, 286903, 294409, 314821, 334153, 340561, 359341, 385003, 385201, 399001, 410041
Offset: 1

Views

Author

Serhat Sevki Dincer (sevki(AT)ug.bilkent.edu.tr), May 05 2003

Keywords

Examples

			a(1)=703 since it is the first number such that 3^(k-1) = 1 (mod k) and 7^(k-1) = 1 (mod k).
		

Crossrefs

Intersection of A005935 and A005938. - R. J. Mathar, Apr 05 2011

Programs

  • Mathematica
    Select[Range[420000],!PrimeQ[#]&&PowerMod[3,#-1,#]==1&&PowerMod[7,#-1,#] == 1&] (* Harvey P. Dale, Mar 08 2014 *)
  • PARI
    is(n)=!isprime(n)&&Mod(7,n)^(n-1)==1&&Mod(3,n)^(n-1)==1 \\ Charles R Greathouse IV, Apr 12 2012

Formula

a(n) = n-th positive integer k(>1) such that 3^(k-1) = 1 (mod k) and 7^(k-1) = 1 (mod k).