A083794 Numbers k such that tau(k) is different from tau(k-1), where tau(m) = number of divisors of m.
1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- P. Erdős, On a problem of Chowla and some related problems, Proc. Cambridge Philos. Soc. 32 (1936), pp. 530-540.
Crossrefs
Cf. A083795.
Programs
-
Maple
with(numtheory): for n from 1 to 150 do if tau(n) <> tau(n-1) then printf(`%d,`,n) fi: od: # James Sellers, May 19 2003
-
Mathematica
a083794[n_] := Prepend[Select[Range[1, n], DivisorSigma[0, #] != DivisorSigma[0, # - 1] &], 1]; a083794[82] (* Michael De Vlieger, Dec 24 2014 *)
-
PARI
is(n)=numdiv(n-1)!=numdiv(n)
Formula
Erdős proved that a(n) ~ n. - Charles R Greathouse IV, Dec 05 2012
Extensions
More terms from James Sellers, May 19 2003