A083809 Let f(n) be the smallest prime == 1 mod n (cf. A034694). Sequence gives triangle T(j,k) = f^k(j) for 1 <= k <= j, read by rows.
2, 3, 7, 7, 29, 59, 5, 11, 23, 47, 11, 23, 47, 283, 1699, 7, 29, 59, 709, 2837, 22697, 29, 59, 709, 2837, 22697, 590123, 1180247, 17, 103, 619, 2477, 34679, 416149, 7490683, 29962733, 19, 191, 383, 4597, 27583, 330997, 9267917, 74143337, 1038006719
Offset: 1
Examples
The first few rows of the triangle are 2 3 7 7 29 59 5 11 23 47 11 23 47 283 1699 7 29 59 709 2837 22697
References
- Amarnath Murthy, On the divisors of Smarandache Unary Sequence. Smarandache Notions Journal, Vol. 11, 2000.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..591
Crossrefs
Programs
-
Magma
f:=function(n) m:=1; while not IsPrime(m*n+1) do m+:=1; end while; return m*n+1; end function; &cat[ [ k eq 1 select f(j) else f(Self(k-1)): k in [1..j] ]: j in [1..9] ]; // Klaus Brockhaus, May 30 2009
-
Mathematica
f[1]=2; f[n_] := f[n] = Block[{p=2}, While[Mod[p, n] != 1, p = NextPrime[p]]; p]; Flatten[Table[Rest @ NestList[f, j, j], {j, 9}]] (* Jean-François Alcover, May 31 2011, improved by Robert G. Wilson v *)
-
PARI
f(n)=my(k=n+1);while(!isprime(k),k+=n);k T(j,k)=for(i=1,k,j=f(j));j \\ Charles R Greathouse IV, Feb 28 2012
Extensions
Edited, corrected and extended by Klaus Brockhaus, May 13 2003
Comments