cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A083852 Decimal palindromes that are multiples of 11.

Original entry on oeis.org

0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 121, 242, 363, 484, 616, 737, 858, 979, 1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 2002, 2112, 2222, 2332, 2442, 2552, 2662, 2772, 2882, 2992, 3003, 3113, 3223, 3333, 3443, 3553, 3663, 3773, 3883, 3993, 4004
Offset: 1

Views

Author

Reinhard Zumkeller, May 06 2003

Keywords

Comments

A083850(a(n))>0; palindromes with even length are terms.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 5500, 11], PalindromeQ] (* Paolo Xausa, Jul 07 2025 *)
  • PARI
    forstep(k=0, 10^5, 11, d=digits(k); d==Vecrev(d) && print1(k, ", ")) \\ Jeppe Stig Nielsen, May 08 2020

A083851 Decimal palindromes that are not multiples of 11.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 101, 111, 131, 141, 151, 161, 171, 181, 191, 202, 212, 222, 232, 252, 262, 272, 282, 292, 303, 313, 323, 333, 343, 353, 373, 383, 393, 404, 414, 424, 434, 444, 454, 464, 474, 494, 505, 515, 525, 535, 545, 555, 565, 575, 585, 595, 606
Offset: 1

Views

Author

Reinhard Zumkeller, May 06 2003

Keywords

Comments

A083850(a(n)) = 0; all members have odd length.

Crossrefs

Programs

  • Mathematica
    max = 600; Complement[Select[Range[max], IntegerDigits[#] == Reverse[IntegerDigits[#]] &], 11Range[Ceiling[max/11]]] (* Alonso del Arte, May 11 2014 *)
  • PARI
    is(n)=n%11 && subst(Polrev(digits(n)), 'x, 10)==n \\ Charles R Greathouse IV, May 14 2014
    
  • Python
    from itertools import chain, count, islice
    def A083851_gen(): # generator of terms
        return filter(lambda n: n % 11,chain.from_iterable((int((s:=str(d))+s[-2::-1]) for d in range(10**l,10**(l+1))) for l in count(0)))
    A083851_list = list(islice(A083851_gen(),20)) # Chai Wah Wu, Jun 23 2022
Showing 1-2 of 2 results.