cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083860 First subdiagonal of generalized Fibonacci array A083856.

Original entry on oeis.org

0, 1, 1, 5, 11, 55, 176, 937, 3781, 21571, 102455, 624493, 3356640, 21752431, 129055681, 884773585, 5696734715, 41129090011, 283908657880, 2149818248341, 15765656131765, 124759995175751, 965186517474191, 7956847444317049, 64577172850366176, 553048437381116275
Offset: 0

Views

Author

Paul Barry, May 06 2003

Keywords

Crossrefs

Programs

  • Maple
    T := proc(n, k) local v; option remember; if 0 <= n and k = 0 then v := 0; end if; if 0 <= n and k = 1 then v := 1; end if; if 0 <= n and 2 <= k then v := T(n, k - 1) + n*T(n, k - 2); end if; v; end proc;
    seq(T(n + 1, n), n = 0 .. 40); # Petros Hadjicostas, Dec 25 2019
  • Mathematica
    T[, 0] = 0; T[, 1|2] = 1;
    T[n_, k_] := T[n, k] = T[n, k-1] + n T[n, k-2];
    a[n_] := T[n+1, n];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Sep 26 2022 *)

Formula

a(n) = (((1 + sqrt(4*n + 5))/2)^n - ((1 - sqrt(4*n + 5))/2)^n)/sqrt(4*n + 5).
a(n) = A193376(n-1, n+1) for n >= 2. - R. J. Mathar, Aug 23 2011
a(n) = Sum_{s = 0..floor((n-1)/2)} binomial(n-1-s, s) * (n+1)^s. - Petros Hadjicostas, Dec 25 2019