A083860 First subdiagonal of generalized Fibonacci array A083856.
0, 1, 1, 5, 11, 55, 176, 937, 3781, 21571, 102455, 624493, 3356640, 21752431, 129055681, 884773585, 5696734715, 41129090011, 283908657880, 2149818248341, 15765656131765, 124759995175751, 965186517474191, 7956847444317049, 64577172850366176, 553048437381116275
Offset: 0
Programs
-
Maple
T := proc(n, k) local v; option remember; if 0 <= n and k = 0 then v := 0; end if; if 0 <= n and k = 1 then v := 1; end if; if 0 <= n and 2 <= k then v := T(n, k - 1) + n*T(n, k - 2); end if; v; end proc; seq(T(n + 1, n), n = 0 .. 40); # Petros Hadjicostas, Dec 25 2019
-
Mathematica
T[, 0] = 0; T[, 1|2] = 1; T[n_, k_] := T[n, k] = T[n, k-1] + n T[n, k-2]; a[n_] := T[n+1, n]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Sep 26 2022 *)
Formula
a(n) = (((1 + sqrt(4*n + 5))/2)^n - ((1 - sqrt(4*n + 5))/2)^n)/sqrt(4*n + 5).
a(n) = A193376(n-1, n+1) for n >= 2. - R. J. Mathar, Aug 23 2011
a(n) = Sum_{s = 0..floor((n-1)/2)} binomial(n-1-s, s) * (n+1)^s. - Petros Hadjicostas, Dec 25 2019