cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083886 Expansion of e.g.f. exp(3*x)*exp(x^2).

Original entry on oeis.org

1, 3, 11, 45, 201, 963, 4899, 26253, 147345, 862083, 5238459, 32957037, 214117209, 1433320515, 9867008979, 69734001357, 505212273441, 3747124863747, 28418591888235, 220152270759597, 1740363304031721, 14027180742479043, 115176800996769411, 962726355659386125, 8186311912829551281, 70769800810139187843
Offset: 0

Views

Author

Paul Barry, May 09 2003

Keywords

Comments

Binomial transform of A000898.
Hankel transform is A108400. - Paul Barry, Jun 13 2009
a(n) is the number of self-inverse signed permutations of length 2n that are equal to their reverse-complements and avoid the pattern (-2,-1). As a result, a(n) also gives the same thing but for avoiding any one of (-1,-2), (+2,+1) or (+1,+2) instead of (-2,-1) (See the Hardt and Troyka reference). - Justin M. Troyka, Aug 05 2011
a(n) is also the number of skew-symmetric (n,n)-clans, or the number of B-orbits in the symmetric space of type CI, Sp_{2n}(C)/GL_n(C) where B is a Borel subgroup of Sp_{2n}(C). - Aram Bingham, Oct 08 2019

Examples

			Since a(2) = 11, there are 11 self-inverse signed permutations of 4 that are equal to their reverse-complements and avoid (-2,-1). Some of these are: (+3,+4,+1,+2), (+4,-2,-3,+1), (-1,+3,+2,-4), (-1,-2,-3,-4). - _Justin M. Troyka_, Aug 05 2011
		

Crossrefs

Programs

  • Mathematica
    a = {1, 3}; For[n = 2, n < 26, n++, a = Append[a, 3 a[[n]] + 2 (n - 1) a[[n - 1]]]]; a (* Justin M. Troyka, Aug 05 2011 *)
    CoefficientList[Series[Exp[3*x+x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 25 2013 *)
    Table[Abs[HermiteH[n, 3 I/2]], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 11 2016 *)
  • PARI
    my(x='x+O('x^26)); Vec(serlaplace(exp(3*x)*exp(x^2))) /* Joerg Arndt, Jul 12 2012 */

Formula

E.g.f.: exp(3*x+x^2).
From Paul Barry, Jun 13 2009: (Start)
G.f.: 1/(1-3x-2x^2/(1-3x-4x^2/(1-3x-6x^2/(1-3x-8x^2/(1-... (continued fraction);
a(n) = Sum_{k=0..floor(n/2)} C(n,2k) * (2k)! * 3^(n-2k) / k!. (End)
a(n) = i^n*Hermite_H(n, -3i/2), i=sqrt(-1). - Paul Barry, Jun 15 2009
a(0) = 1; a(1) = 3; a(n) = 3*a(n-1) + 2*(n-1)*a(n-2) for n >= 2. - Justin M. Troyka, Aug 05 2011
E.g.f. 1 + (x+3)*x/(G(0)-x^2-3*x) where G(k)= x^2 + 3*x + k + 1 - (x+3)*x*(k+1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Jul 12 2012
G.f.: 1/Q(0) where Q(k) = 1 + 2*x*k - 2*x - x/(1 - 2*x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 07 2013
a(n) ~ n^(n/2)*2^(n/2-1/2)*exp(3*sqrt(n/2)-n/2-9/8) * (1+21*sqrt(2)/(32*sqrt(n))). - Vaclav Kotesovec, Jun 25 2013