A083951 Least increasing integer coefficients such that A(x)^(1/3) has only integer coefficients.
1, 3, 6, 7, 9, 12, 13, 15, 18, 21, 24, 27, 28, 30, 33, 34, 36, 39, 41, 42, 45, 47, 48, 51, 52, 54, 57, 60, 63, 66, 69, 72, 75, 77, 78, 81, 83, 84, 87, 88, 90, 93, 94, 96, 99, 100, 102, 105, 108, 111, 114, 116, 117, 120, 121, 123, 126, 127, 129, 132, 133, 135, 138, 139
Offset: 0
Keywords
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..5000.
Programs
-
Mathematica
a[0] = 1; a[n_] := a[n] = Block[{k = a[n - 1] + 1, s = Sum[ a[i]*x^i, {i, 0, n - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^n)^(1/3), {x, 0, n}], x]]] != True, k++ ]; k]; Array[ a, 70] (* Robert G. Wilson v, Sep 19 2008 *)
Extensions
Three non-ascending values in the range 77 to 84 replaced with those from the b-file. - R. J. Mathar, Jan 14 2009
Comments