A083953 Least integer coefficients of A(x), where 1<=a(n)<=3, such that A(x)^(1/3) consists entirely of integer coefficients.
1, 3, 3, 1, 3, 3, 3, 3, 3, 3, 3, 3, 1, 3, 3, 2, 3, 3, 2, 3, 3, 1, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 1, 3, 3, 2, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 3, 3, 3, 1, 3, 3, 1, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 1, 3, 3, 2, 3, 3, 1, 3, 3, 3, 3, 3, 1, 3, 3
Offset: 0
Keywords
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..5000.
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
Programs
-
Mathematica
a[0]=1; a[n_] :=a[n] = Block[{k=1, s=Sum[a[i]*x^i, {i, 0, n-1}]}, While[ Union[ IntegerQ /@ CoefficientList[ Series[(s+k*x^n)^(1/3), {x, 0, n}], x]] != {True}, k++ ]; k]; Table[ a[n], {n, 0, 104}] (* Robert G. Wilson v, Jul 25 2005 *)
Formula
a(k)=1 at k=0, 3, 12, 21, 51, 57, 60, 63, 66, ...; a(k)=2 at k=15, 18, 24, 30, 39, 42, 48, 54, ...
Extensions
More terms from Robert G. Wilson v, Jul 25 2005
Comments