cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084054 5*n digit-reversed mod 5.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0
Offset: 2

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 26 2003

Keywords

Comments

The pattern of increasing frequency of repetition of digits is clear.

Examples

			a(61) =3 as, 61*5 = 305,digit reversed = 503 ==3 (mod 5)
		

Crossrefs

Programs

  • Mathematica
    Contribution from Enrique Pérez Herrero, Jun 14 2010: (Start)
    A084054[n_Integer]:=Mod[FromDigits[Reverse[IntegerDigits[5*n]]],5];
    (* Alternative formula *)
    A084054[n_Integer]:=Mod[Floor[5*n/10^Floor[Log[10,5*n]]],5] (End)

Formula

Contribution from Enrique Pérez Herrero, Jun 14 2010: (Start)
a(n)=mod(floor(5*n/10^(floor(log_10(5*n)))),5), this formula comes from the modulus 5 of the first digit of 5*n.
a(10^n)=1
(End)

Extensions

More terms from Ray Chandler, May 27 2003