cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084061 Square number array read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 5, 27, 1, 1, 6, 36, 256, 1, 1, 7, 45, 353, 3125, 1, 1, 8, 54, 452, 4400, 46656, 1, 1, 9, 63, 553, 5725, 66637, 823543, 1, 1, 10, 72, 656, 7100, 87704, 1188544, 16777216, 1, 1, 11, 81, 761, 8525, 109863, 1577849, 24405761, 387420489, 1, 1, 12, 90, 868, 10000, 133120, 1991752, 32618512, 567108864, 10000000000
Offset: 0

Views

Author

Paul Barry, May 11 2003

Keywords

Examples

			Rows begin:
1 1 4 27 256 ...
1 1 5 36 353 ...
1 1 6 45 452 ...
1 1 7 54 553 ...
1 1 8 63 656 ...
		

Crossrefs

Diagonals include A084062, A084063, A084095.

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> ((k+Sqrt(n-k))^k + (k-Sqrt(n-k))^k)/2 ))); # G. C. Greubel, Jan 11 2020
  • Magma
    [Round(((k+Sqrt(n-k))^k + (k-Sqrt(n-k))^k)/2): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 11 2020
    
  • Maple
    seq(seq( round(((k+sqrt(n-k))^k + (k-sqrt(n-k))^k)/2), k=0..n), n=0..10); # G. C. Greubel, Jan 11 2020
  • Mathematica
    Table[If[n==0 && k==0, 1, Round[((k-Sqrt[n-k])^k + (k+Sqrt[n-k])^k)/2]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 11 2020 *)
  • PARI
    T(n,k) = round( ((k+sqrt(n-k))^n + (k-sqrt(n-k))^k)/2 ); \\ G. C. Greubel, Jan 11 2020
    
  • Sage
    [[round(((k+sqrt(n-k))^k + (k-sqrt(n-k))^k)/2) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jan 11 2020
    

Formula

T(n, k) = ( (n - sqrt(k))^n + (n + sqrt(k))^n )/2.