cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084081 Sum of lists created by n substitutions k -> Range[k+1,0,-2] starting with {0}, counting down from k+1 to 0 step -2.

Original entry on oeis.org

0, 1, 2, 5, 10, 24, 50, 121, 260, 637, 1400, 3468, 7752, 19380, 43890, 110561, 253000, 641355, 1480050, 3771885, 8765250, 22439040, 52451256, 134796060, 316663760, 816540124, 1926501200, 4982228488, 11798983280, 30593078076, 72690164850
Offset: 0

Views

Author

Wouter Meeussen, May 11 2003

Keywords

Comments

Lengths of lists is A047749.

Examples

			Lists {0}, {1}, {2, 0}, {3, 1, 1}, {4, 2, 0, 2, 0, 2, 0} sum to 0, 1, 2, 5, 10.
		

Crossrefs

Programs

  • Magma
    F:=Floor; B:=Binomial;
    function A084081(n)
      if (n mod 2) eq 0 then return 10*B(F((3*n+2)/2), F((n-2)/2))/(n+3);
      else return 2*(3*n+1)*B(F((3*n+5)/2), F((n+1)/2))/((n+3)*(3*n+5));
      end if; return A084081;
    end function;
    [A084081(n): n in [0..40]]; // G. C. Greubel, Oct 17 2022
    
  • Mathematica
    Plus@@@Flatten/@NestList[ # /. k_Integer :> Range[k+1, 0, -2]&, {0}, 8]
    A084081[n_]:= If[EvenQ[n], 10*Binomial[(3*n+2)/2, (n-2)/2]/(n+3), 2*(3*n + 1)*Binomial[(3*n+5)/2, (n+1)/2]/((n+3)*(3*n+5))];
    Table[A084081[n], {n, 40}] (* G. C. Greubel, Oct 17 2022 *)
  • SageMath
    def A084081(n):
        if (n%2==0): return 10*binomial(int((3*n+2)/2), int((n-2)/2))/(n+3)
        else: return 2*(3*n+1)*binomial(int((3*n+5)/2), int((n+1)/2))/((n+3)*(3*n+5))
    [A084081(n) for n in range(40)] # G. C. Greubel, Oct 17 2022

Formula

Equals A093951(n) - A047749(n).
From G. C. Greubel, Oct 17 2022: (Start)
a(2*n+1) = (3*n-1)*binomial[3*n+1, n]/((n+1)*(3*n+1)).
a(2*n) = 10*binomial(3*n+1, n-1)/(2*n+3). (End)