cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A084095 First superdiagonal of number array A084061.

Original entry on oeis.org

1, 1, 5, 45, 553, 8525, 157481, 3383989, 82823777, 2272771305, 69070483549, 2301873355661, 83445967372681, 3268307044050997, 137510640882447041, 6184402325475261525, 296032663549928711041, 15025296455500536616337
Offset: 0

Views

Author

Paul Barry, May 11 2003

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> ((n-Sqrt(n-1))^n + (n+Sqrt(n-1))^n)/2); # G. C. Greubel, Jan 11 2020
  • Magma
    [Round(((n-Sqrt(n-1))^n + (n+Sqrt(n-1))^n)/2): n in [0..20]]; // G. C. Greubel, Jan 11 2020
    
  • Maple
    seq( round(((n-sqrt(n-1))^n + (n+sqrt(n-1))^n)/2), n=0..20); # G. C. Greubel, Jan 11 2020
  • Mathematica
    Table[Round[((n+Sqrt[n-1])^n + (n-Sqrt[n-1])^n)/2], {n,0,20}] (* G. C. Greubel, Jan 11 2020 *)
  • PARI
    vector(21, n, round(((n-1-sqrt(n-2))^(n-1) + (n-1+sqrt(n-2))^(n-1))/2) ) \\ G. C. Greubel, Jan 11 2020
    
  • Sage
    [round(((n-sqrt(n-1))^n + (n+sqrt(n-1))^n)/2) for n in (0..20)] # G. C. Greubel, Jan 11 2020
    

Formula

a(n) = ((n - sqrt(n-1))^n + (n + sqrt(n-1))^n)/2.

A084064 Third row of number array A084061.

Original entry on oeis.org

1, 1, 6, 45, 452, 5725, 87704, 1577849, 32618512, 762046137, 19856872032, 571007744549, 17962793210944, 613650073693397, 22624291883495808, 895379458590349425, 37861032312753094912, 1703550488551604490353
Offset: 0

Views

Author

Paul Barry, May 11 2003

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> ((n-Sqrt(2))^n + (n+Sqrt(2))^n)/2); # G. C. Greubel, Jan 11 2020
  • Magma
    [Round(((n-Sqrt(2))^n + (n+Sqrt(2))^n)/2): n in [0..20]]; // G. C. Greubel, Jan 11 2020
    
  • Maple
    seq( round(((n-sqrt(2))^n + (n+sqrt(2))^n)/2), n=0..20); # G. C. Greubel, Jan 11 2020
  • Mathematica
    Table[Round[((n+Sqrt[2])^n + (n-Sqrt[2])^n)/2], {n,0,20}] (* G. C. Greubel, Jan 11 2020 *)
  • PARI
    vector(21, n, round(((n-1-sqrt(2))^(n-1) + (n-1+sqrt(2))^(n-1))/2) ) \\ G. C. Greubel, Jan 11 2020
    
  • Sage
    [round(((n-sqrt(2))^n + (n+sqrt(2))^n)/2) for n in (0..20)] # G. C. Greubel, Jan 11 2020
    

Formula

a(n) = ( (n - sqrt(2))^n + (n + sqrt(2))^n )/2.

A084065 Fourth row of number array A084061.

Original entry on oeis.org

1, 1, 7, 54, 553, 7100, 109863, 1991752, 41426257, 972602640, 25447064743, 734276705888, 23166635069241, 793426715543488, 29316839407495111, 1162492244159875200, 49240280161094287777, 2218952409252783579392
Offset: 0

Views

Author

Paul Barry, May 11 2003

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> ((n-Sqrt(3))^n + (n+Sqrt(3))^n)/2); # G. C. Greubel, Jan 11 2020
  • Magma
    [Round(((n-Sqrt(3))^n + (n+Sqrt(3))^n)/2): n in [0..20]]; // G. C. Greubel, Jan 11 2020
    
  • Maple
    seq( round(((n-sqrt(3))^n + (n+sqrt(3))^n)/2), n=0..20); # G. C. Greubel, Jan 11 2020
  • Mathematica
    Table[Round[((n+Sqrt[3])^n + (n-Sqrt[3])^n)/2], {n,0,20}] (* G. C. Greubel, Jan 11 2020 *)
  • PARI
    vector(21, n, round(((n-1-sqrt(3))^(n-1) + (n-1+sqrt(3))^(n-1))/2) ) \\ G. C. Greubel, Jan 11 2020
    
  • Sage
    [round(((n-sqrt(3))^n + (n+sqrt(3))^n)/2) for n in (0..20)] # G. C. Greubel, Jan 11 2020
    

Formula

a(n) = ( (n - sqrt(3))^n + (n + sqrt(3))^n )/2.
Showing 1-3 of 3 results.