A084095
First superdiagonal of number array A084061.
Original entry on oeis.org
1, 1, 5, 45, 553, 8525, 157481, 3383989, 82823777, 2272771305, 69070483549, 2301873355661, 83445967372681, 3268307044050997, 137510640882447041, 6184402325475261525, 296032663549928711041, 15025296455500536616337
Offset: 0
-
List([0..20], n-> ((n-Sqrt(n-1))^n + (n+Sqrt(n-1))^n)/2); # G. C. Greubel, Jan 11 2020
-
[Round(((n-Sqrt(n-1))^n + (n+Sqrt(n-1))^n)/2): n in [0..20]]; // G. C. Greubel, Jan 11 2020
-
seq( round(((n-sqrt(n-1))^n + (n+sqrt(n-1))^n)/2), n=0..20); # G. C. Greubel, Jan 11 2020
-
Table[Round[((n+Sqrt[n-1])^n + (n-Sqrt[n-1])^n)/2], {n,0,20}] (* G. C. Greubel, Jan 11 2020 *)
-
vector(21, n, round(((n-1-sqrt(n-2))^(n-1) + (n-1+sqrt(n-2))^(n-1))/2) ) \\ G. C. Greubel, Jan 11 2020
-
[round(((n-sqrt(n-1))^n + (n+sqrt(n-1))^n)/2) for n in (0..20)] # G. C. Greubel, Jan 11 2020
Original entry on oeis.org
1, 1, 6, 45, 452, 5725, 87704, 1577849, 32618512, 762046137, 19856872032, 571007744549, 17962793210944, 613650073693397, 22624291883495808, 895379458590349425, 37861032312753094912, 1703550488551604490353
Offset: 0
-
List([0..20], n-> ((n-Sqrt(2))^n + (n+Sqrt(2))^n)/2); # G. C. Greubel, Jan 11 2020
-
[Round(((n-Sqrt(2))^n + (n+Sqrt(2))^n)/2): n in [0..20]]; // G. C. Greubel, Jan 11 2020
-
seq( round(((n-sqrt(2))^n + (n+sqrt(2))^n)/2), n=0..20); # G. C. Greubel, Jan 11 2020
-
Table[Round[((n+Sqrt[2])^n + (n-Sqrt[2])^n)/2], {n,0,20}] (* G. C. Greubel, Jan 11 2020 *)
-
vector(21, n, round(((n-1-sqrt(2))^(n-1) + (n-1+sqrt(2))^(n-1))/2) ) \\ G. C. Greubel, Jan 11 2020
-
[round(((n-sqrt(2))^n + (n+sqrt(2))^n)/2) for n in (0..20)] # G. C. Greubel, Jan 11 2020
A084065
Fourth row of number array A084061.
Original entry on oeis.org
1, 1, 7, 54, 553, 7100, 109863, 1991752, 41426257, 972602640, 25447064743, 734276705888, 23166635069241, 793426715543488, 29316839407495111, 1162492244159875200, 49240280161094287777, 2218952409252783579392
Offset: 0
-
List([0..20], n-> ((n-Sqrt(3))^n + (n+Sqrt(3))^n)/2); # G. C. Greubel, Jan 11 2020
-
[Round(((n-Sqrt(3))^n + (n+Sqrt(3))^n)/2): n in [0..20]]; // G. C. Greubel, Jan 11 2020
-
seq( round(((n-sqrt(3))^n + (n+sqrt(3))^n)/2), n=0..20); # G. C. Greubel, Jan 11 2020
-
Table[Round[((n+Sqrt[3])^n + (n-Sqrt[3])^n)/2], {n,0,20}] (* G. C. Greubel, Jan 11 2020 *)
-
vector(21, n, round(((n-1-sqrt(3))^(n-1) + (n-1+sqrt(3))^(n-1))/2) ) \\ G. C. Greubel, Jan 11 2020
-
[round(((n-sqrt(3))^n + (n+sqrt(3))^n)/2) for n in (0..20)] # G. C. Greubel, Jan 11 2020
Showing 1-3 of 3 results.