cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A361432 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,2*j).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 4, 0, 1, 4, 12, 20, 8, 0, 1, 5, 20, 54, 68, 16, 0, 1, 6, 30, 112, 252, 232, 32, 0, 1, 7, 42, 200, 656, 1188, 792, 64, 0, 1, 8, 56, 324, 1400, 3904, 5616, 2704, 128, 0, 1, 9, 72, 490, 2628, 10000, 23360, 26568, 9232, 256, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 11 2023

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,    1,     1, ...
  0,  1,   2,    3,    4,     5, ...
  0,  2,   6,   12,   20,    30, ...
  0,  4,  20,   54,  112,   200, ...
  0,  8,  68,  252,  656,  1400, ...
  0, 16, 232, 1188, 3904, 10000, ...
		

Crossrefs

Main diagonal gives A084062.

Programs

  • PARI
    T(n,k) = sum(j=0, n\2, k^(n-j)*binomial(n, 2*j));
    
  • PARI
    T(n, k) = round(((k+sqrt(k))^n+(k-sqrt(k))^n))/2;

Formula

T(0,k) = 1, T(1,k) = k; T(n,k) = 2 * k * T(n-1,k) - (k-1) * k * T(n-2,k).
T(n,k) = ((k + sqrt(k))^n + (k - sqrt(k))^n)/2.
G.f. of column k: (1 - k * x)/(1 - 2 * k * x + (k-1) * k * x^2).
E.g.f. of column k: exp(k * x) * cosh(sqrt(k) * x).

A221131 Table, T, read by antidiagonals where T(-j,k) = ((1+sqrt(j))^k + (1-sqrt(j))^k)/2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, -2, 1, 1, 1, -2, -5, -4, 1, 1, 1, -3, -8, -7, -4, 1, 1, 1, -4, -11, -8, 1, 0, 1, 1, 1, -5, -14, -7, 16, 23, 8, 1, 1, 1, -6, -17, -4, 41, 64, 43, 16, 1, 1, 1, -7, -20, 1, 76, 117, 64, 17, 16, 1, 1, 1, -8, -23, 8, 121, 176, 29, -128, -95, 0, 1
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com) and Robert G. Wilson v, Jan 02 2013

Keywords

Comments

.j\k.........0..1...2....3...4....5....6......7.......8......9......10
.0: A000012..1..1...1....1...1....1....1......1.......1......1.......1
-1: A146559..1..1...0...-2..-4...-4....0......8......16.....16.......0
-2: A087455..1..1..-1...-5..-7....1...23.....43......17....-95....-241
-3: A138230..1..1..-2...-8..-8...16...64.....64....-128...-512....-512
-4: A006495..1..1..-3..-11..-7...41..117.....29....-527..-1199.....237
-5: A138229..1..1..-4..-14..-4...76..176...-104...-1264..-1904....3776
-6: A090592..1..1..-5..-17...1..121..235...-377...-2399..-2159...12475
-7: A090590..1..1..-6..-20...8..176..288...-832...-3968..-1280...29184
-8: A025172..1..1..-7..-23..17..241..329..-1511...-5983...1633...57113
-9: A120743..1..1..-8..-26..28..316..352..-2456...-8432...7696...99712
-10: ........1..1..-9..-29..41..401..351..-3709..-11279..18241..160551

Crossrefs

Programs

  • Mathematica
    T[j_, k_] := Expand[((1 + Sqrt[j])^k + (1 - Sqrt[j])^k)/2]; Table[ T[ -j + k, k], {j, 0, 11}, {k, 0, j}] // Flatten
Showing 1-2 of 2 results.