A084110 Let L(n) = ordered list of divisors of n = {d_1=1, d_2, ..., d_k=n}; set e_1=1, e_i = e_{i-1}/d_i if that is an integer otherwise e_i = e_{i-1}*d_i; then a(n) = e_k.
1, 2, 3, 8, 5, 1, 7, 1, 27, 1, 11, 48, 13, 1, 1, 16, 17, 162, 19, 80, 1, 1, 23, 16, 125, 1, 1, 112, 29, 25, 31, 512, 1, 1, 1, 1944, 37, 1, 1, 25, 41, 49, 43, 176, 405, 1, 47, 48, 343, 1250, 1, 208, 53, 324, 1, 49, 1, 1, 59, 9, 61, 1, 567, 8, 1, 121, 67, 272, 1, 49, 71, 9, 73, 1
Offset: 1
Keywords
Examples
Divisors of 48 = {1,2,3,4,6,8,12,16,24,48}: 1*2*3 = 6 -> 6*4 = 24 -> 24/6 = 4 -> 4*8 = 32 -> 32*12 = 384 -> 384/16 = 24 -> 24/24 = 1 -> 1*48 = a(48); divisors of 49 = {1,7,49}: 1*7 = 7 -> 7*49 = 343 = a(49); divisors of 50 = {1,2,5,10,25,50}: 1*2*5 = 10 -> 10/10 = 1 -> 1*25 = 25 -> 25*50 = 1250 = a(50).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Divisor Product.
- Eric Weisstein's World of Mathematics, Multiplicative Perfect Number.
Programs
-
Haskell
a084110 = foldl (/*) 1 . a027750_row where x /* y = if m == 0 then x' else x*y where (x',m) = divMod x y -- Reinhard Zumkeller, Feb 21 2012, Oct 25 2010
-
Mathematica
a[n_] := Module[{d = Divisors[n], e}, e[i_] := e[i] = If[i == 1, 1, If[Divisible[e[i-1], d[[i]]], e[i-1]/d[[i]], e[i-1] d[[i]]]]; e[Length[d]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 10 2021 *)
Extensions
Corrected and extended by David Wasserman, Dec 14 2004
Comments