cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084137 Binomial transform of A084136.

Original entry on oeis.org

1, 2, 8, 32, 144, 672, 3200, 15360, 73984, 356864, 1722368, 8314880, 40144896, 193830912, 935886848, 4518838272, 21818834944, 105350561792, 508677324800, 2456111022080, 11859152338944, 57261051346944, 276480810549248
Offset: 0

Views

Author

Paul Barry, May 16 2003

Keywords

Comments

Exponential self-convolution of companion Pell numbers (A002203), divided by 4. - Vladimir Reshetnikov, Oct 07 2016

Crossrefs

Programs

  • Magma
    A002203:= func< n | Round((1+Sqrt(2))^n + (1-Sqrt(2))^n) >;
    [2^(n-2)*(2+A002203(n)): n in [0..40]]; // G. C. Greubel, Oct 13 2022
    
  • Mathematica
    Table[2^(n-2)*(2+LucasL[n,2]), {n,0,20}] (* Vladimir Reshetnikov, Oct 07 2016 *)
  • PARI
    a(n)=if(n<0,0,polsym(4+4*x-x^2,n)[n+1]/4+2^(n-1))
    
  • SageMath
    [2^(n-2)*(2+lucas_number2(n, 2, -1)) for n in range(41)] # G. C. Greubel, Oct 13 2022

Formula

G.f.: (1-4*x)/((1-2*x)*(1-4*x-4*x^2)).
E.g.f.: exp(2*x)*cosh(sqrt(2)*x)^2 = (exp(x)*cosh(sqrt(2)*x))^2.
a(n) = ((2+sqrt(8))^n + (2-sqrt(8))^n + 2^(n+1))/4.
a(n) = (A084128(n) + 2^n)/2.
a(n) = 2^(n-2)*(2 + A002203(n)). - Vladimir Reshetnikov, Oct 07 2016
a(n) = 6*a(n-1) - 4*a(n-2) - 8*a(n-3). - G. C. Greubel, Oct 13 2022