A084143 Number of partitions of n into a sum of two or more consecutive primes.
0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 2, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 1
Offset: 1
Keywords
Examples
a(36)=2 because we have 36 = 17 + 19 = 5 + 7 + 11 + 13.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Prime Sums
Programs
-
Maple
g:=sum(sum(product(x^ithprime(k),k=i..j),j=i+1..25),i=1..25): gser:=series(g,x=0,80): seq(coeff(gser,x,n),n=1..75); # Emeric Deutsch, Mar 30 2006 # alternative, R. J. Mathar, Aug 19 2020 A084143 := proc(n::integer) local a,k,i,spr ; a := 0 ; for k from 2 do if add(ithprime(i),i=1..k) > n then break; end if; for i from 1 do spr := add( ithprime(j),j=i..i+k-1) ; if spr > n then break; end if; if spr = n then a := a +1 ; end if; end do: end do: a ; end proc:
-
Mathematica
max = 25; gf = Sum[ Sum[ Product[ x^Prime[k], {k, i, j}], {j, i+1, max}], {i, 1, max}]; Rest[ CoefficientList[gf, x]][[1 ;; 75]] (* Jean-François Alcover, Oct 23 2012, after Emeric Deutsch *)
Formula
G.f.: Sum_{i>=1} Sum_{j>=i+1} Product_{k=i..j} x^prime(k). - Emeric Deutsch, Mar 30 2006