cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084153 Binomial transform of a Jacobsthal convolution.

Original entry on oeis.org

0, 0, 1, 6, 33, 170, 861, 4326, 21673, 108450, 542421, 2712446, 13562913, 67815930, 339082381, 1695417366, 8477097753, 42385510610, 211927596741, 1059638071086, 5298190530193, 26490953000490, 132454765701501, 662273829905606
Offset: 0

Views

Author

Paul Barry, May 16 2003

Keywords

Comments

Binomial transform of A084152.

Crossrefs

Cf. A084152.

Programs

  • Magma
    [(5^n -2^(n+1) +(-1)^n)/18: n in [0..40]]; // G. C. Greubel, Oct 10 2022
    
  • Mathematica
    LinearRecurrence[{6,-3,-10}, {0,0,1}, 41] (* G. C. Greubel, Oct 10 2022 *)
  • SageMath
    [(5^n -2^(n+1) +(-1)^n)/18 for n in range(41)] # G. C. Greubel, Oct 10 2022

Formula

a(n) = (5^n - 2*2^n + (-1)^n)/18.
G.f.: x^2/((1+x)*(1-2*x)*(1-5*x)).
E.g.f.: exp(x)*(exp(2*x) - exp(-x))^2/18 = (exp(5*x) - 2*exp(2*x) + exp(-x))/18.