A084153 Binomial transform of a Jacobsthal convolution.
0, 0, 1, 6, 33, 170, 861, 4326, 21673, 108450, 542421, 2712446, 13562913, 67815930, 339082381, 1695417366, 8477097753, 42385510610, 211927596741, 1059638071086, 5298190530193, 26490953000490, 132454765701501, 662273829905606
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-3,-10).
Crossrefs
Cf. A084152.
Programs
-
Magma
[(5^n -2^(n+1) +(-1)^n)/18: n in [0..40]]; // G. C. Greubel, Oct 10 2022
-
Mathematica
LinearRecurrence[{6,-3,-10}, {0,0,1}, 41] (* G. C. Greubel, Oct 10 2022 *)
-
SageMath
[(5^n -2^(n+1) +(-1)^n)/18 for n in range(41)] # G. C. Greubel, Oct 10 2022
Formula
a(n) = (5^n - 2*2^n + (-1)^n)/18.
G.f.: x^2/((1+x)*(1-2*x)*(1-5*x)).
E.g.f.: exp(x)*(exp(2*x) - exp(-x))^2/18 = (exp(5*x) - 2*exp(2*x) + exp(-x))/18.
Comments