A268963
Primes 4k+1 at the end of the maximal gaps in A084162.
Original entry on oeis.org
5, 13, 29, 89, 137, 229, 509, 1549, 1861, 9601, 15733, 16829, 33289, 39709, 50741, 180949, 183289, 1562053, 1638053, 2244157, 4469141, 4874977, 7856713, 10087481, 12021353, 12214273, 18227081, 148364081, 292182557, 320262769, 468214457, 727335397, 869766761
Offset: 0
a(3) = 89: There are no primes p = 1 mod 4 between 73 and 89, this gap is the largest up to 89, the gap size is 16.
-
Reap[Print[5]; Sow[5]; r = 0; p = 5; For[q = 7, q < 10^7, q = NextPrime[q], If[Mod[q, 4] == 3, Continue[]]; g = q - p; If[g > r, r = g; Print[q] Sow[q]]; p = q]][[2, 1]] (* Jean-François Alcover, Feb 20 2019, from PARI *)
-
print1(5); r=0; p=5; forprime(q=7, 1e9, if(q%4==3, next); g=q-p; if(g>r, r=g; print1(", "q)); p=q)
A084161
Primes that are the sum of two squares and which set a record for the gap to the next prime of that form.
Original entry on oeis.org
2, 5, 17, 73, 113, 197, 461, 1493, 1801, 9533, 15661, 16741, 33181, 39581, 50593, 180797, 183089, 1561829, 1637813, 2243909, 4468889, 4874717, 7856441, 10087201, 12021029, 12213913, 18226661, 148363637, 292182097, 320262253, 468213937
Offset: 0
a(3) = 73: There are no primes p = 1 mod 4 between 73 and 89, this gap is the largest up to 89, the length is 16. Note that 73 = (8 - 3i)(8 + 3i) and 89 = (8 - 5i)(8 + 5i). The primes 79 and 83 are inert in Z[i].
- Ervand Kogbetliantz and Alice Krikorian, Handbook of First Complex Prime Numbers, Parts 1 and 2, Gordon and Breach, 1971.
-
Reap[Print[2]; Sow[2]; r = 0; p = 5; For[q = 7, q < 10^7, q = NextPrime[q], If[Mod[q, 4] == 3, Continue[]]; g = q - p; If[g > r, r = g; Print[p] Sow[p]]; p = q]][[2, 1]] (* Jean-François Alcover, Feb 20 2019, from PARI *)
-
print1(2);r=0;p=5;forprime(q=7,1e7,if(q%4==3,next);g=q-p;if(g>r,r=g;print1(", "p));p=q) \\ Charles R Greathouse IV, Apr 29 2014
Showing 1-2 of 2 results.
Comments