cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084169 A Pell Jacobsthal product.

Original entry on oeis.org

0, 1, 2, 15, 60, 319, 1470, 7267, 34680, 168435, 810898, 3921103, 18918900, 91381991, 441150502, 2130258075, 10285325040, 49663079099, 239791814010, 1157823924167, 5590452446700, 26993130847215, 130334271942158
Offset: 0

Views

Author

Paul Barry, May 18 2003

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [(2^n-(-1)^n)*Evaluate(DicksonSecond(n-1,-1), 2)/3: n in [1..40]]; // G. C. Greubel, Oct 11 2022
    
  • Mathematica
    LinearRecurrence[{2,13,4,-4}, {0,1,2,15}, 41] (* G. C. Greubel, Oct 11 2022 *)
  • SageMath
    def A084169(n): return (2^n-(-1)^n)*lucas_number1(n,2,-1)/3
    [A084169(n) for n in range(41)] # G. C. Greubel, Oct 11 2022

Formula

a(n) = (2^n - (-1)^n)*( (1+sqrt(2))^n - (1-sqrt(2))^n )/(6*sqrt(2)).
a(n) = A001045(n)*A000129(n).
G.f.: x*(1-2*x^2)/((1+2*x-x^2)*(1-4*x-4*x^2)). - Colin Barker, May 01 2012
a(n) = (A007985 + 2*A057087(n))/3. - R. J. Mathar, Sep 29 2020